#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-11 20:58:21 @LastEditor: John LastEditTime: 2021-09-16 01:31:33 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加父路径到系统路径sys.path import datetime import gym import torch from DDPG.env import NormalizedActions, OUNoise from DDPG.agent import DDPG from common.utils import save_results,make_dir from common.plot import plot_rewards, plot_rewards_cn curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class DDPGConfig: def __init__(self): self.algo = 'DDPG' # 算法名称 self.env = 'Pendulum-v0' # 环境名称 self.result_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/results/' # 保存结果的路径 self.model_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/models/' # 保存模型的路径 self.train_eps = 300 # 训练的回合数 self.eval_eps = 50 # 测试的回合数 self.gamma = 0.99 # 折扣因子 self.critic_lr = 1e-3 # 评论家网络的学习率 self.actor_lr = 1e-4 # 演员网络的学习率 self.memory_capacity = 8000 self.batch_size = 128 self.target_update = 2 self.hidden_dim = 256 self.soft_tau = 1e-2 # 软更新参数 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def env_agent_config(cfg,seed=1): env = NormalizedActions(gym.make(cfg.env)) env.seed(seed) # 随机种子 state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] agent = DDPG(state_dim,action_dim,cfg) return env,agent def train(cfg, env, agent): print('开始训练!') print(f'环境:{cfg.env},算法:{cfg.algo},设备:{cfg.device}') ou_noise = OUNoise(env.action_space) # 动作噪声 rewards = [] # 记录奖励 ma_rewards = [] # 记录滑动平均奖励 for i_ep in range(cfg.train_eps): state = env.reset() ou_noise.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) action = ou_noise.get_action(action, i_step) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state if (i_ep+1)%10 == 0: print('回合:{}/{},奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('完成训练!') return rewards, ma_rewards def eval(cfg, env, agent): print('开始测试!') print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}') rewards = [] # 记录奖励 ma_rewards = [] # 记录滑动平均奖励 for i_ep in range(cfg.eval_eps): state = env.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward state = next_state print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('完成测试!') return rewards, ma_rewards if __name__ == "__main__": cfg = DDPGConfig() # 训练 env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards_cn(rewards, ma_rewards, tag="train", env = cfg.env, algo=cfg.algo, path=cfg.result_path) # 测试 env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag = 'eval',path = cfg.result_path) plot_rewards_cn(rewards,ma_rewards,tag = "eval",env = cfg.env,algo = cfg.algo,path=cfg.result_path)