class DefaultConfig: def __init__(self) -> None: pass def print_cfg(self): print(self.__dict__) class GeneralConfig(DefaultConfig): def __init__(self) -> None: self.env_name = "CartPole-v1" # name of environment self.algo_name = "DQN" # name of algorithm self.mode = "train" # train or test self.seed = 0 # random seed self.device = "cuda" # device to use self.train_eps = 200 # number of episodes for training self.test_eps = 20 # number of episodes for testing self.eval_eps = 10 # number of episodes for evaluation self.eval_per_episode = 5 # evaluation per episode self.max_steps = 200 # max steps for each episode self.load_checkpoint = False self.load_path = None # path to load model self.show_fig = False # show figure or not self.save_fig = True # save figure or not class AlgoConfig(DefaultConfig): def __init__(self) -> None: # set epsilon_start=epsilon_end can obtain fixed epsilon=epsilon_end # self.epsilon_start = 0.95 # epsilon start value # self.epsilon_end = 0.01 # epsilon end value # self.epsilon_decay = 500 # epsilon decay rate self.gamma = 0.95 # discount factor # self.lr = 0.0001 # learning rate # self.buffer_size = 100000 # size of replay buffer # self.batch_size = 64 # batch size # self.target_update = 4 # target network update frequency class MergedConfig: def __init__(self) -> None: pass