#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-11 17:59:16 LastEditor: John LastEditTime: 2022-04-24 23:03:51 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path of file parent_path = os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import datetime import torch from envs.racetrack_env import RacetrackEnv from Sarsa.sarsa import Sarsa from common.utils import save_results,make_dir,plot_rewards curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time class Config: ''' parameters for Sarsa ''' def __init__(self): self.algo_name = 'Qlearning' self.env_name = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check GPU self.result_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" +self.env_name+'/'+curr_time+'/models/' # path to save models self.train_eps = 300 self.test_eps = 20 self.epsilon_start = 0.90 # start value of epsilon self.epsilon_end = 0.01 # end value of epsilon self.epsilon_decay = 200 # decay rate of epsilon self.gamma = 0.99 # gamma: Gamma discount factor. self.lr = 0.2 # learning rate: step size parameter self.n_steps = 200 self.save = True # if save figures def env_agent_config(cfg,seed=1): env = RacetrackEnv() action_dim = 9 agent = Sarsa(action_dim,cfg) return env,agent def train(cfg,env,agent): rewards = [] ma_rewards = [] for i_ep in range(cfg.train_eps): state = env.reset() action = agent.choose_action(state) ep_reward = 0 # while True: for _ in range(cfg.n_steps): next_state, reward, done = env.step(action) ep_reward+=reward next_action = agent.choose_action(next_state) agent.update(state, action, reward, next_state, next_action,done) state = next_state action = next_action if done: break if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) rewards.append(ep_reward) if (i_ep+1)%2==0: print(f"Episode:{i_ep+1}, Reward:{ep_reward}, Epsilon:{agent.epsilon}") return rewards,ma_rewards def eval(cfg,env,agent): rewards = [] ma_rewards = [] for i_ep in range(cfg.test_eps): # Print out which episode we're on, useful for debugging. # Generate an episode. # An episode is an array of (state, action, reward) tuples state = env.reset() ep_reward = 0 while True: # for _ in range(cfg.n_steps): action = agent.predict_action(state) next_state, reward, done = env.step(action) ep_reward+=reward state = next_state if done: break if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) rewards.append(ep_reward) if (i_ep+1)%1==0: print("Episode:{}/{}: Reward:{}".format(i_ep+1, cfg.test_eps,ep_reward)) print('Complete evaling!') return rewards,ma_rewards if __name__ == "__main__": cfg = Config() env,agent = env_agent_config(cfg,seed=1) rewards,ma_rewards = train(cfg,env,agent) make_dir(cfg.result_path,cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) plot_rewards(rewards, ma_rewards, cfg, tag="train") env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='test',path=cfg.result_path) plot_rewards(rewards, ma_rewards, cfg, tag="test")