import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime import numpy as np import argparse from common.utils import save_results from common.utils import plot_rewards,save_args from common.models import MLP from common.memories import ReplayBuffer from dqn import DQN def get_args(): """ 超参数 """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor") parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon") parser.add_argument('--lr',default=0.0001,type=float,help="learning rate") parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity") parser.add_argument('--batch_size',default=64,type=int) parser.add_argument('--target_update',default=4,type=int) parser.add_argument('--hidden_dim',default=256,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not") parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed=1): ''' 创建环境和智能体 ''' env = gym.make(cfg.env_name) # 创建环境 n_states = env.observation_space.shape[0] # 状态维度 n_actions = env.action_space.n # 动作维度 print(f"状态数:{n_states},动作数:{n_actions}") model = MLP(n_states,n_actions,hidden_dim=cfg.hidden_dim) memory = ReplayBuffer(cfg.memory_capacity) # 经验回放 agent = DQN(n_actions,model,memory,cfg) # 创建智能体 if seed !=0: # 设置随机种子 torch.manual_seed(seed) env.seed(seed) np.random.seed(seed) return env, agent def train(cfg, env, agent): ''' 训练 ''' print("开始训练!") print(f"回合:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}") rewards = [] # 记录所有回合的奖励 steps = [] for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录一回合内的奖励 ep_step = 0 state = env.reset() # 重置环境,返回初始状态 while True: ep_step += 1 action = agent.sample(state) # 选择动作 next_state, reward, done, _ = env.step(action) # 更新环境,返回transition agent.memory.push(state, action, reward, next_state, done) # 保存transition state = next_state # 更新下一个状态 agent.update() # 更新智能体 ep_reward += reward # 累加奖励 if done: break if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新 agent.target_net.load_state_dict(agent.policy_net.state_dict()) steps.append(ep_step) rewards.append(ep_reward) if (i_ep + 1) % 10 == 0: print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f},Epislon:{agent.epsilon:.3f}') print("完成训练!") env.close() res_dic = {'rewards':rewards} return res_dic def test(cfg, env, agent): print("开始测试!") print(f"回合:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}") rewards = [] # 记录所有回合的奖励 steps = [] for i_ep in range(cfg.test_eps): ep_reward = 0 # 记录一回合内的奖励 ep_step = 0 state = env.reset() # 重置环境,返回初始状态 while True: ep_step+=1 action = agent.predict(state) # 选择动作 next_state, reward, done, _ = env.step(action) # 更新环境,返回transition state = next_state # 更新下一个状态 ep_reward += reward # 累加奖励 if done: break steps.append(ep_step) rewards.append(ep_reward) print(f'回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}') print("完成测试") env.close() return {'rewards':rewards} if __name__ == "__main__": cfg = get_args() # 训练 env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) save_args(cfg,path = cfg.result_path) # 保存参数到模型路径上 agent.save(path = cfg.model_path) # 保存模型 save_results(res_dic, tag = 'train', path = cfg.result_path) plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train") # 测试 env, agent = env_agent_config(cfg) # 也可以不加,加这一行的是为了避免训练之后环境可能会出现问题,因此新建一个环境用于测试 agent.load(path = cfg.model_path) # 导入模型 res_dic = test(cfg, env, agent) save_results(res_dic, tag='test', path = cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test") # 画出结果