#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2022-08-04 22:44:00 Discription: Environment: ''' import sys import os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime import argparse from envs.gridworld_env import CliffWalkingWapper from Sarsa.sarsa import Sarsa from common.utils import plot_rewards,save_args from common.utils import save_results,make_dir def get_args(): """ """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='Sarsa',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CliffWalking-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=400,type=int,help="episodes of training") # 训练的回合数 parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") # 测试的回合数 parser.add_argument('--gamma',default=0.90,type=float,help="discounted factor") # 折扣因子 parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") # e-greedy策略中初始epsilon parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") # e-greedy策略中的终止epsilon parser.add_argument('--epsilon_decay',default=300,type=int,help="decay rate of epsilon") # e-greedy策略中epsilon的衰减率 parser.add_argument('--lr',default=0.1,type=float,help="learning rate") parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # path to save models parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args([]) return args curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录奖励 for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录每个回合的奖励 state = env.reset() # 重置环境,即开始新的回合 action = agent.sample(state) while True: action = agent.sample(state) # 根据算法采样一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互 next_action = agent.sample(next_state) agent.update(state, action, reward, next_state, next_action,done) # 算法更新 state = next_state # 更新状态 action = next_action ep_reward += reward if done: break rewards.append(ep_reward) print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.1f},Epsilon:{agent.epsilon}") print('完成训练!') return {"rewards":rewards} def test(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 for i_ep in range(cfg.test_eps): ep_reward = 0 # 记录每个episode的reward state = env.reset() # 重置环境, 重新开一局(即开始新的一个回合) while True: action = agent.predict(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一个交互 state = next_state # 更新状态 ep_reward += reward if done: break rewards.append(ep_reward) print(f"回合数:{i_ep+1}/{cfg.test_eps}, 奖励:{ep_reward:.1f}") print('完成测试!') return {"rewards":rewards} def env_agent_config(cfg,seed=1): '''创建环境和智能体 Args: cfg ([type]): [description] seed (int, optional): 随机种子. Defaults to 1. Returns: env [type]: 环境 agent : 智能体 ''' env = gym.make(cfg.env_name) env = CliffWalkingWapper(env) env.seed(seed) # 设置随机种子 n_states = env.observation_space.n # 状态维度 n_actions = env.action_space.n # 动作维度 print(f"状态数:{n_states},动作数:{n_actions}") agent = Sarsa(n_actions,cfg) return env,agent if __name__ == "__main__": cfg = get_args() # 训练 env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) save_args(cfg) # save parameters agent.save(path=cfg.model_path) # save model save_results(res_dic, tag='train', path=cfg.result_path) plot_rewards(res_dic['rewards'], cfg, tag="train") # 测试 env, agent = env_agent_config(cfg) agent.load(path=cfg.model_path) # 导入模型 res_dic = test(cfg, env, agent) save_results(res_dic, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], cfg, tag="test") # 画出结果