#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:50:49 @LastEditor: John @LastEditTime: 2020-06-14 13:56:45 @Discription: @Environment: python 3.7.7 ''' '''off-policy ''' import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import random import math import numpy as np from memory import ReplayBuffer from model import FCN class DQN: def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01,batch_size=128, device="cpu"): self.actions_count = 0 self.n_actions = n_actions self.device = device self.gamma = gamma self.epsilon = 0 self.epsilon_start = epsilon_start self.epsilon_end = epsilon_end self.epsilon_decay = epsilon_decay self.batch_size = batch_size self.policy_net = FCN(n_states,n_actions).to(self.device) self.target_net = FCN(n_states,n_actions).to(self.device) self.target_net.load_state_dict(self.policy_net.state_dict()) self.target_net.eval() # 不启用 BatchNormalization 和 Dropout self.optimizer = optim.Adam(self.policy_net.parameters(),lr=policy_lr) self.loss = 0 self.memory = ReplayBuffer(memory_capacity) def select_action(self,state): '''选择工作 Args: state [array]: 状态 Returns: [array]: 动作 ''' self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.actions_count / self.epsilon_decay) self.actions_count += 1 if random.random() > self.epsilon: with torch.no_grad(): state = torch.tensor([state],device=self.device,dtype=torch.float32) # 先转为张量便于丢给神经网络,state元素数据原本为float64;注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 q_value = self.policy_net(state) # tensor([[-0.0798, -0.0079]], grad_fn=) action = q_value.max(1)[1].item() else: action = random.randrange(self.n_actions) return action def update(self): if len(self.memory) < self.batch_size: return state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size) state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float) # 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]]) action_batch = torch.tensor(action_batch,device=self.device).unsqueeze(1) # 例如tensor([[1],...,[0]]) reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float) # tensor([1., 1.,...,1]) next_state_batch = torch.tensor(next_state_batch,device=self.device,dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch),device=self.device).unsqueeze(1) # 将bool转为float然后转为张量 # Compute Q(s_t, a) - the model computes Q(s_t), then we select the # columns of actions taken. These are the actions which would've been taken # for each batch state according to policy_net q_values = self.policy_net(state_batch).gather(1, action_batch) # 等价于self.forward # Compute V(s_{t+1}) for all next states. # Expected values of actions for non_final_next_states are computed based # on the "older" target_net; selecting their best reward with max(1)[0]. # This is merged based on the mask, such that we'll have either the expected # state value or 0 in case the state was final. next_state_values = self.target_net( next_state_batch).max(1)[0].detach() # tensor([ 0.0060, -0.0171,...,]) # Compute the expected Q values expected_q_values = reward_batch + self.gamma * next_state_values * (1-done_batch[0]) # Compute Huber loss # self.loss = nn.MSELoss(q_values, expected_q_values.unsqueeze(1)) self.loss = nn.MSELoss()(q_values,expected_q_values.unsqueeze(1)) # Optimize the model self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise you’d just accumulate the gradients from all loss.backward() calls). self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation. for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters.