#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2022-10-30 00:53:03 LastEditor: JiangJi LastEditTime: 2022-11-01 00:17:55 Discription: default parameters of A2C ''' from common.config import GeneralConfig,AlgoConfig class GeneralConfigA2C(GeneralConfig): def __init__(self) -> None: self.env_name = "CartPole-v1" # name of environment self.algo_name = "A2C" # name of algorithm self.mode = "train" # train or test self.seed = 1 # random seed self.device = "cuda" # device to use self.train_eps = 1000 # number of episodes for training self.test_eps = 20 # number of episodes for testing self.max_steps = 200 # max steps for each episode self.load_checkpoint = False self.load_path = "tasks" # path to load model self.show_fig = False # show figure or not self.save_fig = True # save figure or not class AlgoConfigA2C(AlgoConfig): def __init__(self) -> None: self.continuous = False # continuous or discrete action space self.hidden_dim = 256 # hidden_dim for MLP self.gamma = 0.99 # discount factor self.actor_lr = 3e-4 # learning rate of actor self.critic_lr = 1e-3 # learning rate of critic self.actor_hidden_dim = 256 # hidden_dim for actor MLP self.critic_hidden_dim = 256 # hidden_dim for critic MLP self.buffer_size = 100000 # size of replay buffer self.batch_size = 64 # batch size