#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-11 17:59:16 LastEditor: John LastEditTime: 2022-08-04 22:28:51 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import datetime import argparse from envs.racetrack_env import RacetrackEnv from Sarsa.sarsa import Sarsa from common.utils import save_results,make_dir,plot_rewards,save_args def get_args(): """ 超参数 """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='Sarsa',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CliffWalking-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=300,type=int,help="episodes of training") # 训练的回合数 parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") # 测试的回合数 parser.add_argument('--ep_max_steps',default=200,type=int) # 每回合最大的部署 parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") # 折扣因子 parser.add_argument('--epsilon_start',default=0.90,type=float,help="initial value of epsilon") # e-greedy策略中初始epsilon parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") # e-greedy策略中的终止epsilon parser.add_argument('--epsilon_decay',default=200,type=int,help="decay rate of epsilon") # e-greedy策略中epsilon的衰减率 parser.add_argument('--lr',default=0.2,type=float,help="learning rate") parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # path to save models parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed=1): env = RacetrackEnv() n_actions = 9 # 动作数 agent = Sarsa(n_actions,cfg) return env,agent def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录奖励 for i_ep in range(cfg.train_eps): state = env.reset() action = agent.sample(state) ep_reward = 0 # while True: for _ in range(cfg.ep_max_steps): next_state, reward, done = env.step(action) ep_reward+=reward next_action = agent.sample(next_state) agent.update(state, action, reward, next_state, next_action,done) state = next_state action = next_action if done: break rewards.append(ep_reward) if (i_ep+1)%2==0: print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.1f},Epsilon:{agent.epsilon}") print('完成训练!') return {"rewards":rewards} def test(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 # while True: for _ in range(cfg.ep_max_steps): action = agent.predict(state) next_state, reward, done = env.step(action) ep_reward+=reward state = next_state if done: break rewards.append(ep_reward) print(f"回合数:{i_ep+1}/{cfg.test_eps}, 奖励:{ep_reward:.1f}") print('完成测试!') return {"rewards":rewards} if __name__ == "__main__": cfg = get_args() # 训练 env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) save_args(cfg) # save parameters agent.save(path=cfg.model_path) # save model save_results(res_dic, tag='train', path=cfg.result_path) plot_rewards(res_dic['rewards'], cfg, tag="train") # 测试 env, agent = env_agent_config(cfg) agent.load(path=cfg.model_path) # 导入模型 res_dic = test(cfg, env, agent) save_results(res_dic, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], cfg, tag="test") # 画出结果