#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2022-08-24 11:27:01 Discription: Environment: ''' import sys,os os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized." curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add path to system path import gym import datetime import argparse from envs.gridworld_env import CliffWalkingWapper,FrozenLakeWapper from qlearning import QLearning from common.utils import plot_rewards,save_args,all_seed from common.utils import save_results,make_dir def get_args(): curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='Q-learning',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CliffWalking-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=400,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.90,type=float,help="discounted factor") parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") parser.add_argument('--epsilon_decay',default=300,type=int,help="decay rate of epsilon") parser.add_argument('--lr',default=0.1,type=float,help="learning rate") parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--seed',default=10,type=int,help="seed") parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not") parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/", 'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/", } args = {**vars(args),**default_args} # type(dict) return args def env_agent_config(cfg): ''' create env and agent ''' if cfg['env_name'] == 'CliffWalking-v0': env = gym.make(cfg['env_name']) env = CliffWalkingWapper(env) if cfg['env_name'] == 'FrozenLake-v1': env = gym.make(cfg['env_name'],is_slippery=False) if cfg['seed'] !=0: # set random seed all_seed(env,seed=cfg["seed"]) n_states = env.observation_space.n # state dimension n_actions = env.action_space.n # action dimension print(f"n_states: {n_states}, n_actions: {n_actions}") cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters agent = QLearning(cfg) return env,agent def main(cfg,env,agent,tag = 'train'): print(f"Start {tag}ing!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] # 记录奖励 for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录每个回合的奖励 state = env.reset() # 重置环境,即开始新的回合 while True: if tag == 'train':action = agent.sample_action(state) # 根据算法采样一个动作 else: agent.predict_action(state) next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互 if tag == 'train':agent.update(state, action, reward, next_state, done) # Q学习算法更新 state = next_state # 更新状态 ep_reward += reward if done: break rewards.append(ep_reward) print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.1f},Epsilon:{agent.epsilon}") print(f"Finish {tag}ing!") return {"rewards":rewards} def train(cfg,env,agent): print("Start training!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] # record rewards for all episodes steps = [] # record steps for all episodes for i_ep in range(cfg['train_eps']): ep_reward = 0 # reward per episode ep_step = 0 # step per episode state = env.reset() # reset and obtain initial state while True: action = agent.sample_action(state) # sample action next_state, reward, done, _ = env.step(action) # update env and return transitions agent.update(state, action, reward, next_state, done) # update agent state = next_state # update state ep_reward += reward ep_step += 1 if done: break rewards.append(ep_reward) steps.append(ep_step) if (i_ep+1)%10==0: print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}, Epislon: {agent.epsilon:.3f}') print("Finish training!") return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps} def test(cfg,env,agent): print("Start testing!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] # record rewards for all episodes steps = [] # record steps for all episodes for i_ep in range(cfg['test_eps']): ep_reward = 0 # reward per episode ep_step = 0 state = env.reset() # reset and obtain initial state while True: action = agent.predict_action(state) # predict action next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward ep_step += 1 if done: break rewards.append(ep_reward) steps.append(ep_step) print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}") print("Finish testing!") return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps} if __name__ == "__main__": cfg = get_args() # training env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) save_args(cfg,path = cfg['result_path']) # save parameters agent.save_model(path = cfg['model_path']) # save models save_results(res_dic, tag = 'train', path = cfg['result_path']) # save results plot_rewards(res_dic['rewards'], cfg, path = cfg['result_path'],tag = "train") # plot results # testing env, agent = env_agent_config(cfg) # create new env for testing, sometimes can ignore this step agent.load_model(path = cfg['model_path']) # load model res_dic = test(cfg, env, agent) save_results(res_dic, tag='test', path = cfg['result_path']) plot_rewards(res_dic['rewards'], cfg, path = cfg['result_path'],tag = "test")