#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:21:53 LastEditor: John LastEditTime: 2022-07-21 21:44:00 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add to system path import gym import torch import datetime import argparse from itertools import count from pg import PolicyGradient from common.utils import save_results, make_dir from common.utils import plot_rewards def get_args(): """ Hyperparameters """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=300,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") parser.add_argument('--lr',default=0.01,type=float,help="learning rate") parser.add_argument('--batch_size',default=8,type=int) parser.add_argument('--hidden_dim',default=36,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # path to save models parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed=1): env = gym.make(cfg.env_name) env.seed(seed) n_states = env.observation_space.shape[0] agent = PolicyGradient(n_states,cfg) return env,agent def train(cfg,env,agent): print('Start training!') print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}') state_pool = [] # temp states pool per several episodes action_pool = [] reward_pool = [] rewards = [] ma_rewards = [] for i_ep in range(cfg.train_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state_pool.append(state) action_pool.append(float(action)) reward_pool.append(reward) state = next_state if done: print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}') break if i_ep > 0 and i_ep % cfg.batch_size == 0: agent.update(reward_pool,state_pool,action_pool) state_pool = [] action_pool = [] reward_pool = [] rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Finish training!') env.close() # close environment return rewards, ma_rewards def test(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] ma_rewards = [] for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state = next_state if done: print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward)) break rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('完成测试!') env.close() return rewards, ma_rewards if __name__ == "__main__": cfg = Config() # 训练 env, agent = env_agent_config(cfg) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=cfg.model_path) # 保存模型 save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果 # 测试 env, agent = env_agent_config(cfg) agent.load(path=cfg.model_path) # 导入模型 rewards, ma_rewards = test(cfg, env, agent) save_results(rewards, ma_rewards, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果