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3.1 Soft policy evaluation
FRUERIQ function:
Q" (s,a) = 7(s,a) + VE (0, [Q(s', a")]
FRUERIV function:
V7(8) = E(spap)~pe Q8" a')]
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Ve i1(8') = By a1y p [Qsogi(s',a") — arlog(m(a’[s"))]

A 15 Soft QFNV ¥ Bellman /5 e :

Qoose(s:a) = 7(5,a) +VE(s,0)p, [Q(s', a") — alog(m(a's"))]
= 7(8,a) +YE gV (s')]

Y@ Epolicy T, {# Fsoft Bellman equation B #Q value B F I 8L
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4.1 Critic
VORI QEIS . SHGII KT QU NS S, QMEE TR REDY:
Ta(8) = Bisapi, 1105 (Quls0,00) — (r{st,a0) + 1V(st:1)))?)
Fftarget soft QRIHIIBAL. #AVIEIREISR:
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4.3 Update temperature
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Algorithm 1 Soft Actor-Critic

Initialize parameter vectors 1, zZ, 0, ¢.
for each iteration do
for each environment step do
a ~ my(a[st)
St41 ™~ P(St+1|St,at)
D«+DuU {(st) ag, T(st’ at)’ St+1)}
end for
for each gradient step do
Y= Ay Vydy ()
0; < 0; — AoV, Jg(6;) fori € {1,2}
qé — ¢ — )\,rV¢J,r(g5)
Y1+ (1-7)Y
end for
end for
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