#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2021-05-06 17:04:38 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import gym import torch import datetime from envs.gridworld_env import CliffWalkingWapper from QLearning.agent import QLearning from common.plot import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time class QlearningConfig: '''训练相关参数''' def __init__(self): self.algo = 'Qlearning' self.env = 'CliffWalking-v0' # 0 up, 1 right, 2 down, 3 left self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models self.train_eps = 300 # 训练的episode数目 self.eval_eps = 30 self.gamma = 0.9 # reward的衰减率 self.epsilon_start = 0.95 # e-greedy策略中初始epsilon self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率 self.lr = 0.1 # learning rate self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu def env_agent_config(cfg,seed=1): env = gym.make(cfg.env) env = CliffWalkingWapper(env) env.seed(seed) state_dim = env.observation_space.n action_dim = env.action_space.n agent = QLearning(state_dim,action_dim,cfg) return env,agent def train(cfg,env,agent): print('Start to train !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] ma_rewards = [] # moving average reward for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录每个episode的reward state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode) while True: action = agent.choose_action(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互 agent.update(state, action, reward, next_state, done) # Q-learning算法更新 state = next_state # 存储上一个观察值 ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print("Episode:{}/{}: reward:{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward)) print('Complete training!') return rewards,ma_rewards def eval(cfg,env,agent): # env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up # env = FrozenLakeWapper(env) print('Start to eval !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] # 记录所有episode的reward ma_rewards = [] # 滑动平均的reward for i_ep in range(cfg.eval_eps): ep_reward = 0 # 记录每个episode的reward state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode) while True: action = agent.predict(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一个交互 state = next_state # 存储上一个观察值 ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}") print('Complete evaling!') return rewards,ma_rewards if __name__ == "__main__": cfg = QlearningConfig() env,agent = env_agent_config(cfg,seed=1) rewards,ma_rewards = train(cfg,env,agent) make_dir(cfg.result_path,cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path) env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)