#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:50:49 @LastEditor: John LastEditTime: 2021-05-07 16:30:05 @Discription: @Environment: python 3.7.7 ''' '''off-policy ''' import torch import torch.nn as nn import torch.optim as optim import random import math import numpy as np from common.memory import ReplayBuffer from common.model import MLP class DQN: def __init__(self, state_dim, action_dim, cfg): self.action_dim = action_dim # 总的动作个数 self.device = cfg.device # 设备,cpu或gpu等 self.gamma = cfg.gamma # 奖励的折扣因子 # e-greedy策略相关参数 self.frame_idx = 0 # 用于epsilon的衰减计数 self.epsilon = lambda frame_idx: cfg.epsilon_end + \ (cfg.epsilon_start - cfg.epsilon_end) * \ math.exp(-1. * frame_idx / cfg.epsilon_decay) self.batch_size = cfg.batch_size self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device) self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device) for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # copy params from policy net target_param.data.copy_(param.data) self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) self.memory = ReplayBuffer(cfg.memory_capacity) def choose_action(self, state): '''选择动作 ''' self.frame_idx += 1 if random.random() > self.epsilon(self.frame_idx): action = self.predict(state) else: action = random.randrange(self.action_dim) return action def predict(self,state): with torch.no_grad(): state = torch.tensor([state], device=self.device, dtype=torch.float32) q_values = self.policy_net(state) action = q_values.max(1)[1].item() return action def update(self): if len(self.memory) < self.batch_size: return # 从memory中随机采样transition state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) '''转为张量 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])''' state_batch = torch.tensor( state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze( 1) # 例如tensor([[1],...,[0]]) reward_batch = torch.tensor( reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1]) next_state_batch = torch.tensor( next_state_batch, device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32( done_batch), device=self.device) '''计算当前(s_t,a)对应的Q(s_t, a)''' '''torch.gather:对于a=torch.Tensor([[1,2],[3,4]]),那么a.gather(1,torch.Tensor([[0],[1]]))=torch.Tensor([[1],[3]])''' q_values = self.policy_net(state_batch).gather( dim=1, index=action_batch) # 等价于self.forward # 计算所有next states的V(s_{t+1}),即通过target_net中选取reward最大的对应states next_q_values = self.target_net(next_state_batch).max( 1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,]) # 计算 expected_q_value # 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward expected_q_values = reward_batch + \ self.gamma * next_q_values * (1-done_batch) # self.loss = F.smooth_l1_loss(q_values,expected_q_values.unsqueeze(1)) # 计算 Huber loss loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算 均方误差loss # 优化模型 self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step # loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分 loss.backward() # for param in self.policy_net.parameters(): # clip防止梯度爆炸 # param.grad.data.clamp_(-1, 1) self.optimizer.step() # 更新模型 def save(self, path): torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth') def load(self, path): self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth')) for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): param.data.copy_(target_param.data)