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Why:

F£ Playing Atari with Deep Reinforcement Learning(Mnih et al., 2013) &= , DQNRE{FF%EBER (Agent) BEF|
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What:
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How:
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{HESREIRET |, SN EREREWUN (obs) ZAEZY (Ex:. BEEINKG) & , ASHAMNERE (Value
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1. Deep Q-Learning (JFEQ¥3))

FRREQ¥IFNIE , BEESHCHOMIF EHE ML I IUMERE (Value Function) V (s)SEhEME
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(obs) {HITHIVIEEKQE.
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KZS[A] (State space) BENEN{EZSIA] (Action Space) {£5%
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REQESRIFEIRERATETT (Trick)

296078 (Experience Replay) : 4t34%UE B RMEMBEE D A ME0E | F155IERTREH
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2) BAMLE (Target Network) : fi#RFERFFZE4 (Timing Difference , TD) 3B}, TD targetfll4
BIQMILE = AR XA AR,

REQFEIHFKEEL (Loss Function)
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2. Partial Observability (Z345>a]XLM)
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Figure 2: DROQN convolves three times over a single-channel
image of the game screen. The resulting activations are
processed through time by an LSTM layer. The last two
timesteps are shown here. LSTM outputs become Q-Values
after passing through a fully-connected layer. Convolutional
filters are depicted by rectangular sub-boxes with pointed
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sl] (Forget Gate) : IZHFPLESIRIREE , PLAUIEE RS
AT (Input Gate) : =%ML& ABIRIRNICIZE TS b,

Hidi[7] (Output Gate) : FTHICIZESX LA BHRNKFR , BICIZE8TTH KM —E 5 SR RS th
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L; (61) = IE(s,a,r,s’)ND [(Yi - Q (Sa a; 91))2]
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1. Flickering Pong POMDP ([J%%fPong , ¥4 AT WU 5 /R A] e R kit 72 )

DONBEHNBE LTI (obs) MIER/FHA BRI HRS AT MM BI/RA] RRFKLFE (POMDP)
AT I/RAI RRFLFE (MDP) .

K ER : AT RIEDRQNFEEF POMDPH: R I F A ShELS M A A5 25M., SIA
Flickering Pong POMDP 3fPongiiXk & .

Pong Flickering.Pong;

KW EEANNARK |, FPREA TS BT EME p = 0.5, #RAXFARE Flickering
Pong IR B —HHMEER |, BIEEAEKIY, , (FRREAFENN (obs) AHPOMDPHIR,

AT RAE
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WALBNEEEHRERF | FR T A XA
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(a) Convl Filters

0% : EF—EEFEF |, B FEERME Flickering Pongiis kI iz FroEkTA.

(b) Conv?2 Filters

WM& : HEZEEFED | JEE ST ME Flickering Ponglifk s s iBktal R BRIKE3 A M . B
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(c) Conv3 Filters

W& HEZREERET , ISKSHeNEERAFERAREER , B, RREMBhTE.
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(d) Image sequences maximizing three sample LSTM unity /7~
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2. Evaluation on Standard Atari Games

, ¥ MZEFlickering Pongif Xk R ISR EH |,

W EEmR)EHEFRENDAN DK WAL EmE &S HLSTMZEK
MR BRI A R, BT, YESFHERHFPOMDPH RS ,
EA(EFLSTMA#REEMLE /=
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(FRAERAtari R IE(S)

KEEM AT MR EER L FDRQNFREE MG AR AU E T HFHFEMEL (CNN) HKIDQNARERILE AR
RUTEARHER)Atari 2600 XAE SRR KR , (RPN ARIK Atari 2600 JERIMEITLRE (.

T AT IHES TS

MDPHJT

WWHEESMSITREN |, BEMKFP = 0.05

EEMAABE LR

WM Em R R E4 N EE. FHER MLt

Kvbaseline : 2T HFAHLRLE (CNN) HKIDQNIRE W LZAERIFE N FR AR Atari 26007 3 AE S5 FR R 1)
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DRQN +std DQN =+std
Game Ours Mnih et al.
Asteroids 1020 (£312) 1070 (£345) 1629 (£542)
Beam Rider 3269 (_:ll(n ) 6923 (+1027) | 6846 (£1619)
Bowling 62 (£5.9) 72(+11) 42 (£88)

Centipede
Chopper Cmd
Double Dunk
Frostbite

Ice Hockey
Ms. Pacman

3534 (+£1601)
2070 (£875)
-2 (+7.8)
2875 (£535)
4.4 (£1.6)
2048 (£653)

3653 (£1903)
1460 (£976)
-10 (£3.5)
519 (£363)
-3.5(£3.5)
2363 (+735)

KBLERL : FEINARIMIFRAEFFEF , 2T DRONFRERILR LT (K E AT

ET DN MR R RIAE

TREIR,

8309 (+£5237)
6687 (+2916)
-18.1 (+2.6)
328.3 (£250.5)
-1.6 (£2.5)
2311 (£525
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KK4EE3 : DRQNFE FrostbiteifXk FRIEIF. HXRHMES 2 BRI PO BT HFMS sk L3R [
REIED. ZEBklE  SEREZIRBHRIKR , TUERER LAZE—NIKE. FETERT
NKBHANT—K.
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R | EREMR SR AR IRAERS 17 e A ARETL A4 XU &) BT B A8 BOAFAE .

3. MDP to POMDP Generalization (MDPZI|POMDPH)jZ 114 )

ST ¢ AT I {E A E T DRQNMEEIH FEERIEARAERIMDP (i )\ ABE Larililem & a41 &
M) EVIZISRIRERET |, FEHET ZIPOMDPME SIRARR) AT S FMRRT |, RBERHI SRR TRE R R IFA
M2

KB ARG 2009 Atari 2600iAEFHELATIANNE (Flickering) W& , FEFNIIEILSK |, i
KB TE 2 BIRAIEIER pIRIRO0.1~0. O AERAOR i VI SRAF A B REA I TSR .

Kebaseline : ETHEFUHEMLE (CNN) HIDQNLEMLEAHERIEPOMDPH: I Atari 2600 JKAES IR
B S L RIES ¥ (Percentage Original Score)



Percentage Original Score
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Observation Probability CSDN @Mr.Jvhbk

SKRLEE ¢ EARERIMDPIIZRANE T DRQNIEEL K EREAFIE T DONR R EIREMR | S3HIFERKR
(Flickering) RERIFFEIAZEPSITIHE , BETAEMEER , £ T DRQNETIKEREAMERE T FEAINERE
HAPLE T DQNRRL ZRE(AE /N,

>? [POMDP Score

Z?:1M DP Score
iis the number of game environments

P ercentage Original Score =

J\. TR

1. LSTM7Efi# R B 5 POMDPE R 115 _E AR EE FRNNRA

1E Reinforcement learning with long shortterm memory(Bakker et al., 2001) XX+ , £ EBPOMDPM &
I Corridor#Cartpole? 5 £ , {F FALSTM#REILEMEARUFSIF K AF K%L (Advantage Function) it

X, AEEET-{E FARNNAFLE LG RERS AT TT TS . BSRCorridorMCartpole M E PR 2 [RIFHIE S 2 ALK
FHYEZSA) , MAELT Atari 2600 IR ERR D |

2. LSTM7£fi# 3 A5 POMDPYE FT{E S AESS

1E Solving deep memory POMDPs with recurrent policy gradients(Wierstra et al., 2007) 3X &8 3 & 5c{F P %k
R (Policy Gradient) £A5&LSTMAFLE ML AR R ARG POMDPM KA, ({EETVIEFFERR I LB TF T
WATHUSE | FIRBLE SR EHE ML BT HE| B shig BUSE.

1. ETDRQNERFZREERTIE POMDPHE I Atari 2600 JERIE FAMEWIM (obs) B , BERSFIF
AWMBERRA |, FEISET DQNREYEREMR TR N ELL 10 VLN @152 i) [ LRHMEARR.
BN AT DRONAERUBEB I RITH E K.

2. ARHE PRAERQ) Atari 2600 JERRIMERES BIEARR | 72 R TR R EAFHERESF (B2
Frostbite jif%k) , ZT DRQNAZALEREMR RIS iR T AT DQNR R EIRE(K.,

3. ETDRQNAEIEREARTEARIK Atari 2600 IR TIBZIHIIPOMDPRITEIL T , Hiz thtE4tbt
ET DRONIEFU A ERE(K LT,
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ASOESSHUER , I LSTMAHEE R4 (RIDRQNAEREREMR |, X AAPOMDPHFHIA L , HitaE
FUATDON, EEXEIREF , MBEUESHREMERME. BRUARS , FTUETRAGMHNRTT.
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1. B FIBIAER

EESRETE, BEAMETRMESF , BLi5Double DQNAIDueling DQNMID3QNHE %, AIIAFEA
IR A DRONFREEMEXAETIZOM F | (EFADIQNSRILF S HIARIATRE , MEHREAEAR IR HIR
WP RUAFHESIME (6120 Beam Rider jifxk) REREBREMEAE EAIRS | FHABIRGMRIRTT.

2. EFHEER

ERUFIIN TP L AHEFBRT |, EREENMUB RS IR KN (obs) ESIHEIFFIIAHE |
EHERRBEREASHBMNE (Action) MABAMVK—ERIRHTFES . MRFZ REREEIIZRIFH R
igm BRREB SIS MU TE R | ABK LA EBHIEE , DAL ER SR AREENE.

3. R AR AR AETY R

& B EZ DS A% O E Transformeri e L ETHIN | TransformerffiZFESEICNNFIRNN |, R {$
BEENHE (Attention) . [EB}Vision TransformerfdH ENFTAE T NLPARIS AN CVATUE A0 R |, A
Transformer AR FAREY A M ATRLAUR M FTER.

A2 BIERBER BB VERNINE Atari 2600 J(T5IME L, PADQNE X EA | {§/H £ T Vision
Transformert&ZY IUSMEERER , SKIERWFSREn , IR ESRERRES X R E T HIMERE !
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