import torch import torch.nn as nn import torch.optim as optim import torch.autograd as autograd import random import math import numpy as np class CNN(nn.Module): def __init__(self, n_frames, n_actions): super(CNN,self).__init__() self.n_frames = n_frames self.n_actions = n_actions # Layers self.conv1 = nn.Conv2d( in_channels=n_frames, out_channels=16, kernel_size=8, stride=4, padding=2 ) self.conv2 = nn.Conv2d( in_channels=16, out_channels=32, kernel_size=4, stride=2, padding=1 ) self.fc1 = nn.Linear( in_features=3200, out_features=256, ) self.fc2 = nn.Linear( in_features=256, out_features=n_actions, ) # Activation Functions self.relu = nn.ReLU() def flatten(self, x): batch_size = x.size()[0] x = x.view(batch_size, -1) return x def forward(self, x): # Forward pass x = self.relu(self.conv1(x)) # In: (80, 80, 4) Out: (20, 20, 16) x = self.relu(self.conv2(x)) # In: (20, 20, 16) Out: (10, 10, 32) x = self.flatten(x) # In: (10, 10, 32) Out: (3200,) x = self.relu(self.fc1(x)) # In: (3200,) Out: (256,) x = self.fc2(x) # In: (256,) Out: (4,) return x class ReplayBuffer: def __init__(self, capacity): self.capacity = capacity # 经验回放的容量 self.buffer = [] # 缓冲区 self.position = 0 def push(self, state, action, reward, next_state, done): ''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition) ''' if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移 state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等 return state, action, reward, next_state, done def __len__(self): ''' 返回当前存储的量 ''' return len(self.buffer) class DQN: def __init__(self, n_states, n_actions, cfg): self.n_actions = n_actions # 总的动作个数 self.device = cfg.device # 设备,cpu或gpu等 self.gamma = cfg.gamma # 奖励的折扣因子 # e-greedy策略相关参数 self.frame_idx = 0 # 用于epsilon的衰减计数 self.epsilon = lambda frame_idx: cfg.epsilon_end + \ (cfg.epsilon_start - cfg.epsilon_end) * \ math.exp(-1. * frame_idx / cfg.epsilon_decay) self.batch_size = cfg.batch_size self.policy_net = CNN(n_states, n_actions).to(self.device) self.target_net = CNN(n_states, n_actions).to(self.device) for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net target_param.data.copy_(param.data) self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器 self.memory = ReplayBuffer(cfg.memory_capacity) # 经验回放 def choose_action(self, state): ''' 选择动作 ''' self.frame_idx += 1 if random.random() > self.epsilon(self.frame_idx): with torch.no_grad(): state = torch.tensor([state], device=self.device, dtype=torch.float32) q_values = self.policy_net(state) action = q_values.max(1)[1].item() # 选择Q值最大的动作 else: action = random.randrange(self.n_actions) return action def update(self): if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略 return # 从经验回放中(replay memory)中随机采样一个批量的转移(transition) state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) # 转为张量 state_batch = torch.tensor(state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float) next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch), device=self.device) q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a) next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值 # 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch) loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失 # 优化更新模型 self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() def save(self, path): torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth') def load(self, path): self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth')) for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): param.data.copy_(target_param.data)