#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-11 20:58:21 @LastEditor: John LastEditTime: 2022-02-10 06:23:27 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径sys.path import datetime import gym import torch from env import NormalizedActions,OUNoise from ddpg import DDPG from DDPG.train import train,test from common.utils import save_results,make_dir from common.utils import plot_rewards curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class Config: '''超参数 ''' def __init__(self): ################################## 环境超参数 ################################### self.algo_name = 'DDPG' # 算法名称 self.env_name = 'Pendulum-v1' # 环境名称,gym新版本(约0.21.0之后)中Pendulum-v0改为Pendulum-v1 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十 self.seed = 10 # 随机种子,置0则不设置随机种子 self.train_eps = 300 # 训练的回合数 self.test_eps = 50 # 测试的回合数 ################################################################################ ################################## 算法超参数 ################################### self.gamma = 0.99 # 折扣因子 self.critic_lr = 1e-3 # 评论家网络的学习率 self.actor_lr = 1e-4 # 演员网络的学习率 self.memory_capacity = 8000 # 经验回放的容量 self.batch_size = 128 # mini-batch SGD中的批量大小 self.target_update = 2 # 目标网络的更新频率 self.hidden_dim = 256 # 网络隐藏层维度 self.soft_tau = 1e-2 # 软更新参数 ################################################################################ ################################# 保存结果相关参数 ################################ self.result_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/results/' # 保存结果的路径 self.model_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/models/' # 保存模型的路径 self.save = True # 是否保存图片 ################################################################################ def env_agent_config(cfg,seed=1): env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声 env.seed(seed) # 随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] agent = DDPG(n_states,n_actions,cfg) return env,agent def train(cfg, env, agent): print('开始训练!') print(f'环境:{cfg.env_name},算法:{cfg.algo},设备:{cfg.device}') ou_noise = OUNoise(env.action_space) # 动作噪声 rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.train_eps): state = env.reset() ou_noise.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) action = ou_noise.get_action(action, i_step) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state if (i_ep+1)%10 == 0: print('回合:{}/{},奖励:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('完成训练!') return rewards, ma_rewards def test(cfg, env, agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.test_eps): state = env.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward state = next_state print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}") print('完成测试!') return rewards, ma_rewards if __name__ == "__main__": cfg = Config() # 训练 env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果 # 测试 env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = test(cfg,env,agent) save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path) plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果