#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-12 16:58:16 LastEditor: John LastEditTime: 2022-08-25 21:26:08 Discription: Environment: ''' import numpy as np from collections import defaultdict import torch import math class Sarsa(object): def __init__(self,cfg): self.n_actions = cfg['n_actions'] self.lr = cfg['lr'] self.gamma = cfg['gamma'] self.epsilon = cfg['epsilon_start'] self.sample_count = 0 self.epsilon_start = cfg['epsilon_start'] self.epsilon_end = cfg['epsilon_end'] self.epsilon_decay = cfg['epsilon_decay'] self.Q_table = defaultdict(lambda: np.zeros(self.n_actions)) # Q table def sample_action(self, state): ''' another way to represent e-greedy policy ''' self.sample_count += 1 self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.sample_count / self.epsilon_decay) # The probability to select a random action, is is log decayed best_action = np.argmax(self.Q_table[str(state)]) # array cannot be hashtable, thus convert to str action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions action_probs[best_action] += (1.0 - self.epsilon) action = np.random.choice(np.arange(len(action_probs)), p=action_probs) return action def predict_action(self,state): ''' predict action while testing ''' action = np.argmax(self.Q_table[str(state)]) return action def update(self, state, action, reward, next_state, next_action,done): Q_predict = self.Q_table[str(state)][action] if done: Q_target = reward # terminal state else: Q_target = reward + self.gamma * self.Q_table[str(next_state)][next_action] # the only difference from Q learning self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict) def save_model(self,path): import dill from pathlib import Path # create path Path(path).mkdir(parents=True, exist_ok=True) torch.save( obj=self.Q_table, f=path+"checkpoint.pkl", pickle_module=dill ) print("Model saved!") def load_model(self, path): import dill self.Q_table=torch.load(f=path+'checkpoint.pkl',pickle_module=dill) print("Mode loaded!")