#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2022-06-21 19:36:05 Discription: Environment: ''' import sys import os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime from env.gridworld_env import CliffWalkingWapper from qlearning import QLearning from common.utils import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class Config: '''超参数 ''' def __init__(self): ################################## 环境超参数 ################################### self.algo_name = 'Q-learning' # 算法名称 self.env_name = 'CliffWalking-v0' # 环境名称 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十 self.seed = 10 # 随机种子,置0则不设置随机种子 self.train_eps = 400 # 训练的回合数 self.test_eps = 30 # 测试的回合数 ################################################################################ ################################## 算法超参数 ################################### self.gamma = 0.90 # 强化学习中的折扣因子 self.epsilon_start = 0.95 # e-greedy策略中初始epsilon self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon self.epsilon_decay = 300 # e-greedy策略中epsilon的衰减率 self.lr = 0.1 # 学习率 ################################################################################ ################################# 保存结果相关参数 ################################ self.result_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/results/' # 保存结果的路径 self.model_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/models/' # 保存模型的路径 self.save = True # 是否保存图片 ################################################################################ def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录奖励 ma_rewards = [] # 记录滑动平均奖励 for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录每个回合的奖励 state = env.reset() # 重置环境,即开始新的回合 while True: action = agent.choose_action(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互 agent.update(state, action, reward, next_state, done) # Q学习算法更新 state = next_state # 更新状态 ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print("回合数:{}/{},奖励{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward)) print('完成训练!') return rewards,ma_rewards def test(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 滑动平均的奖励 for i_ep in range(cfg.test_eps): ep_reward = 0 # 记录每个episode的reward state = env.reset() # 重置环境, 重新开一局(即开始新的一个回合) while True: action = agent.predict(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一个交互 state = next_state # 更新状态 ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print(f"回合数:{i_ep+1}/{cfg.test_eps}, 奖励:{ep_reward:.1f}") print('完成测试!') return rewards,ma_rewards def env_agent_config(cfg,seed=1): '''创建环境和智能体 Args: cfg ([type]): [description] seed (int, optional): 随机种子. Defaults to 1. Returns: env [type]: 环境 agent : 智能体 ''' env = gym.make(cfg.env_name) env = CliffWalkingWapper(env) env.seed(seed) # 设置随机种子 n_states = env.observation_space.n # 状态维度 n_actions = env.action_space.n # 动作维度 agent = QLearning(n_states,n_actions,cfg) return env,agent if __name__ == "__main__": cfg = Config() # 训练 env, agent = env_agent_config(cfg, seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=cfg.model_path) # 保存模型 save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果 # 测试 env, agent = env_agent_config(cfg, seed=10) agent.load(path=cfg.model_path) # 导入模型 rewards, ma_rewards = test(cfg, env, agent) save_results(rewards, ma_rewards, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果