#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2020-10-07 21:05:33 Discription: Environment: ''' # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- import gym from gridworld import CliffWalkingWapper, FrozenLakeWapper from agent import QLearning import os import numpy as np import argparse import time import matplotlib.pyplot as plt def get_args(): '''训练的模型参数 ''' parser = argparse.ArgumentParser() parser.add_argument("--gamma", default=0.9, type=float, help="reward 的衰减率") parser.add_argument("--epsilon_start", default=0.9, type=float,help="e-greedy策略中初始epsilon") parser.add_argument("--epsilon_end", default=0.1, type=float,help="e-greedy策略中的结束epsilon") parser.add_argument("--epsilon_decay", default=200, type=float,help="e-greedy策略中epsilon的衰减率") parser.add_argument("--policy_lr", default=0.1, type=float,help="学习率") parser.add_argument("--max_episodes", default=500, type=int,help="训练的最大episode数目") config = parser.parse_args() return config def train(cfg): # env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up # env = FrozenLakeWapper(env) env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left env = CliffWalkingWapper(env) agent = QLearning( obs_dim=env.observation_space.n, action_dim=env.action_space.n, learning_rate=cfg.policy_lr, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,epsilon_end=cfg.epsilon_end,epsilon_decay=cfg.epsilon_decay) render = False # 是否打开GUI画面 rewards = [] # 记录所有episode的reward MA_rewards = [] # 记录滑动平均的reward steps = []# 记录所有episode的steps for i_episode in range(1,cfg.max_episodes+1): ep_reward = 0 # 记录每个episode的reward ep_steps = 0 # 记录每个episode走了多少step obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode) while True: action = agent.sample(obs) # 根据算法选择一个动作 next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互 # 训练 Q-learning算法 agent.learn(obs, action, reward, next_obs, done) # 不需要下一步的action obs = next_obs # 存储上一个观察值 ep_reward += reward ep_steps += 1 # 计算step数 if render: env.render() #渲染新的一帧图形 if done: break steps.append(ep_steps) rewards.append(ep_reward) # 计算滑动平均的reward if i_episode == 1: MA_rewards.append(ep_reward) else: MA_rewards.append( 0.9*MA_rewards[-1]+0.1*ep_reward) print('Episode %s: steps = %s , reward = %.1f, explore = %.2f' % (i_episode, ep_steps, ep_reward,agent.epsilon)) # 每隔20个episode渲染一下看看效果 if i_episode % 20 == 0: render = True else: render = False agent.save() # 训练结束,保存模型 output_path = os.path.dirname(__file__)+"/result/" # 检测是否存在文件夹 if not os.path.exists(output_path): os.mkdir(output_path) np.save(output_path+"rewards_train.npy", rewards) np.save(output_path+"MA_rewards_train.npy", MA_rewards) np.save(output_path+"steps_train.npy", steps) def test(cfg): env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left env = CliffWalkingWapper(env) agent = QLearning( obs_dim=env.observation_space.n, action_dim=env.action_space.n, learning_rate=cfg.policy_lr, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,epsilon_end=cfg.epsilon_end,epsilon_decay=cfg.epsilon_decay) agent.load() # 导入保存的模型 rewards = [] # 记录所有episode的reward MA_rewards = [] # 记录滑动平均的reward steps = []# 记录所有episode的steps for i_episode in range(1,10+1): ep_reward = 0 # 记录每个episode的reward ep_steps = 0 # 记录每个episode走了多少step obs = env.reset() # 重置环境, 重新开一局(即开始新的一个episode) while True: action = agent.predict(obs) # 根据算法选择一个动作 next_obs, reward, done, _ = env.step(action) # 与环境进行一个交互 obs = next_obs # 存储上一个观察值 time.sleep(0.5) env.render() ep_reward += reward ep_steps += 1 # 计算step数 if done: break steps.append(ep_steps) rewards.append(ep_reward) # 计算滑动平均的reward if i_episode == 1: MA_rewards.append(ep_reward) else: MA_rewards.append( 0.9*MA_rewards[-1]+0.1*ep_reward) print('Episode %s: steps = %s , reward = %.1f' % (i_episode, ep_steps, ep_reward)) plt.plot(MA_rewards) plt.show() def main(): cfg = get_args() # train(cfg) test(cfg) if __name__ == "__main__": main()