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1iHE
1.1 FE--E 5= R0

MDQN S IR R IMKIAFARZ O, & MAEHEEDouble DQN2, Dueling DQN3,
Prioritized replay®, Multi-step2, Distributional RL2, Noisy Net/&753%, XLEF EHARREIM
37, tb#iEDuelinghESEEZIEDouble DQNFPrioritized replay4s&itesk,

1.2 {E--HiE

AXAEELRSMDONTELERNMEE—E, RS —TBEFHINLS.

1.3 HEE--TTk

1. B Atari 26009SOTA(State-of-the-art)
2. BB EIFAERARNER, ZMRERERTETAHERAMEEAITIR.

2 O E =
2.1 RL problem & it S

sEftF I HE—TEBIF(Action)iIEBER(Agent) FES PR (Environment) X BRI FE AT A B A 3R il
(Reward), X PMERFHAZERREANTESY., XEPERII-—MEX:

—. Mathematical formalism for learning- based decision making

Z. Approach for learning decision-making and control from experience

MDP (Markov Decision Process) {S, A, T,r,v}

EREMEES Tt =0,1,2,.., HERSS,RELEER—TWUER0,, BEBRINSIANNERTEN
MEDS, = O), EINEEEMRBEBWNEEMENIEA, ZEMELEET—TNEMR 1, XER9HTI
Vi1 AR EHFORS S 1


https://arxiv.org/pdf/1710.02298

S1

ERXTIRERES, ARBRNIER, NFIRERIIRSHEFR (Stochastic transition function), XEhATE
(25

T(s,a,s') = P[Sti1-¢|St = s, At = q]
r(s;a) = E[R1[S: = s, A = a

MNFEREMAER, RIBRES: (FETEWNTHMNO, SRIEEMIEARETRET (Policy), &R
FIRRPBATNBERERACE TIRSREE T BRI NRE 20

P(At == (1,) == 7T0[At = a]St = S]
mazGy = 52 ¥ Ry 11

BHNENRE A THERABEZEI=TSR:

1. R
2. THMHERE &R ITERIIR
3. IRFREE

2.2 Policy Gradient: EIiZiRFHER

NTRARUKREHNEIR, BITUERENG &AM (BIREINFRORCEMENTESE)

REINFORCE algorithm:
> 1. sample {7'} from mg(a;|s;) (run it on the robot)

| 2. VoJ(0) =Y, (3, Vologmg(ails))) (3=, r(si, af))
e 3.0« 0+ aVeJ(0)

BATET LAFIABaseline, N-steps. Discount, Importance samplingZ #1553 &35 # T80 .



2.3 Actor-CrtichHi%: 1Mt CiR(Estimate return)5 2 HREE o FF

WA ASINFHPASIMERERV ™ (s) RESUENHENITEG, ZBEHRAM(A3C0), tLRIAEEFA
V7 () MEEIREMEREQ (s, a) RETETMERBNEI S E.

V7(s) = Ex[Gy| S = 5]
Qﬂ-(s’a) = Eﬂ'[Gt‘S‘t = S,At = (1,]

batch actor-critic algorithm:
= 1. sample {s;,a;} from my(als) (run it on the robot)
2. fit Vg (s) to sampled reward sums )
3. evaluate A™(s;,a;) = r(s;,a;) + Vi(s;) — Vi(si)
4. VoJ(0) = > . Vglogm(ai|si)A™(s;, a;)
50— 0+ aVeJ(h)

A TR R F EIRGH(Replay buffer). #42R& RS S R IREIBEERIE,
2.4 Value-based method IF FHEE

Policy iteration->Value iteration->Q learning

BRAMREBERSMEERRE, ZZEEATNEFENAMNSRYINA RN RMEAFITE, WE
MEAIETRVEZE R EHELE NRERM.

V7(s) =Y _m(als) { r(s,a) +7>_ p(s'ls,a)V7(s")

acA s'eS

V*(s) = max{r(s,a) + 7 3 P(s]s,a)V*(s")}
s'eS

EETFMEFIEENLRF, AARBNRABRE—NELRERE, RBE(s,q,s,r)IFEEETE

JCiE
RS, HATBESRSIAMHNIRE (Exploration) MR, ENEEe — GreedytIHiE, E—
EMRR IR RIS £ RIENE,

a%t— argmax*aEAQ(a), S AREHE K 1-¢
WA BB RE, SRR e
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EMEECNER L, BNTURFERV (s)FES], MRARBIERQ(s, a); Q-iteration algorithm (&
Q — learning)R I 2N TEAR

online Q iteration algorithm: /
~=» 1. take some action a; and observe (s;, a;,s., r;)

2. yi =r(si,a;) + 7 maxy Qd)(sga a;)
S 3. —a ﬁf (sisai)(Qe(sisa;) — yi)

2.5 DQN#S

FELAFEATNRSTMDPER, MERFERE, ESRTEMERRZENTEERMERERER
FINTE, BANLRIRERRNEAEE

1. RS-shE= BRI ELE
2. RS ENENEZ BS54 EARNIHR T AR E RS- ENE

BEREZMENRE, BINFEANAMENESNHREBALRCR, BRNES—FSFHe — Greedytih
RRRERCEHNER, HABBETERER E&) N ERRRENEIR
min(Rii1 + Yer1mazy (Sii1,a’) — qo(St, Ar))?
o 1 MIAKA/NANKEZIEIRGHE (PS: SEEBA/RH)
o 2 AERERENEIMESEIIANL Qo (s, a) SEIRNE Qy (s,a)
e 3FOREIE =1, NDO:
o 4 FREIMEIAINT s
o 5FORAJESL =1, TDO:

» 6 IRIBEHBINSEa; = maz,Qy(s,a)EEe — GreedyF5ERKEEa; (PS: FEX—F
SHERIBEERR S 2 EDQNER B AMNIE =)

» 7 HATENEa, 3RBYr, FREIRS T R s

» 8 TFfif LIRRIFHE SR EREIRGE

= 9 if RIEIRCBENE E0%:
= 10 Rifbatchsize™MER{s], a}, 7%, st |}
= 11 IHEBRMEY, =7 + 7 *maz,Q; (sl ,a})
= 2 RIVERERBL = L(yi — Qu(si,al))?

» 13 EHNESE
o 14 END FOR

o 15 E?ﬁ'ah"—_l,n/ 0
e 16 END FOR



Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T7 do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;), a; )
Execute action a; in emulator and observe reward r; and image x;1
Set S¢4+1 = S¢, at, T¢41 and preprocess @41 = G(S¢41)
Store transition (¢¢, at, r¢, ¢¢41) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;41) from D
Sety. — 4 Ti for terminal ¢; 1
Yi rj +ymaxy Q(@j41,a’;0) for non-terminal ¢,
Perform a gradient descent step on (y,; — Q(¢;, a;; 6))* according to equation
end for
end for

HAp R FlEIsaE:

1. Z58[E(Experience replay)SBEIIRR; X—HoEFERN TIREHARERE, FNFEEE
WE T REPERIIE X,

2. BtnMZ(Target network); HIFTDIREERBHREIZF SR, ELEMHEMEIUETTE
MARREM, HLMEFNBEmNG, E8XEATIREPENERE, TEAéﬁéFE%ﬁziﬁl, XHE
FEMEQNLE,

SCI0

A more general view

. & /ﬂcurregt% o process 2 & tar;gt/
process 1: data collection W‘meteqtarget update Wmterﬂ
(s,a,s’,7) S e ¢ s h ?I g

o dataset of transitions

\\\ e e -
m(als) (e.g., e-greedy) o evict old data ﬁ

3 DQNZX#
SADQNRINIL A F I ERLEFEBIAL, BEKIBEXFSHA.
3.1 24i#1: Double Q- Learning

EDQNFEEEIHETSHIER, IERWT:

target — value : y; = r} +ymaz,; L Q4 Sihalq)

mazy Qs (Si1yal,) = Qg (si.y,argmazy Q;(si,,ai,,))


https://paperswithcode.com/paper/playing-atari-with-deep-reinforcement

RIFHE AT

E[maz(X1, X2)] > maz(E(X1), E(X2))
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HATETIEAAIETTERANREZRABREREEFRTATTEQEMERE—TME, WRMERIT
MIEFMQEITENBEXEMAIMBRRSM, FLERTHNBATT AT MWL

QGA (87 Cl,) =7+ 7Q05 (3,7 al)

Qo (s,a) =7+7Qq, (s, a')

HARFRA AR —T M4, BRSEBMEEE, FEEINITERM. NN TATEZRER

Qo (s, a)ERITHEEIT?

(target_value_double_Q — learning) : yi = + vQ; (st L1, GTYMAT, o, (st H,aﬁ 1))

3.2 (i#2: Prioritized replay

AEDQNEIIRREZHRHMA(s, a, v, s) A, BAZERRNEMASAREFME—ENENEE, EHRE
TERAOMZEEEMEREIMFIIZTRE (Uniformly sampling) Ri#THS, BEFIMKIBREFER

aE:

1. KIBR BT EBREIE 2 [BIRILE D AR
2. EHBIL—EERN. EENZNEIE

EZE X PIEEE SRR TD-error fEREE (s}, af, 7, st ) HIEREARN, ERRENIRER,

IR A AR RF. REMNERERFSFHIRERF OG-,

SE:

R RHIFRENE3.2.1F03.2.2/



(mmws) P(i) = Ei)},g’

3.2.1 Ll 54R (Proportional prioritization)
P, =|oi|+¢€
3.2.2 ETFHR M &R (Rank-based prioritization)

P = Lo (RARRIMRIELIER, NIRRT

FARMEARARSIEEMNA N, EXWMAERASUM-treeMNBURERRREZEREE., EXREH
ZEREEM R (Importance sampling), HHLRHFITRRE(Annealing the bias) FRIEIEIRE

_ 1
wj = (§ P(i)

Algorithm 1 Double DQN with proportional prioritization

1: Input: minibatch k, step-size 7, replay period K and size N, exponents « and £3, budget 7.
2: Initialize replay memory H =0, A =0,p; =1

3: Observe S and choose Ay ~ m4(Sp)

4: fort =1to 7' do

5.  Observe S;, Ry, 7y
6:  Store transition (S;—1, A¢—1, Rt, ¢, St) in H with maximal priority p; = max; < p;
7. if t=0 mod K then
8: for j =1tok do
9: Sample transition j ~ P(j) = p$/ >, p?
10: Compute importance-sampling welght wj = (N-P(j ))_‘3 / max; w;
11: Compute TD-error §; = R; + 77, Quarget (S, arg max, Q(S;,a)) — Q(S;-1,4;-1)
12: Update transition priority p; < [d;|
13: Accumulate weight-change A <~ A 4+ w; - §; - VgQ(S;-1,A4;-1)
14: end for
15: Update weights 0 < 6 +n- A, reset A =0
16: From time to time copy weights into target network Oage; < 0
17:  end if
18:  Choose action A; ~ my(S;)
19: end for

3.3 #3: Dueling networks

Dueling DOQNZ—HM# X E T MER BN F I NN B LI, E#T\E&Em'ﬁlﬂkuuﬂfﬂﬂﬁm
H, MBHLRSNHERBSHERTHBERY, RABEZHAN/LENERSH, EEENZERE
MERBS MBRHEZENSE,

> au(fe(s),a’)

N actions

q0(s,a) = vy(fe(s)) + ay(fe(s),a) —

b)
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Figure 1. A popular single stream (Q-network (top) and the duel-
ing Q-network (bottom). The dueling network has two streams
to separately estimate (scalar) state-value and the advantages for
each action; the green output module implements equation (9) to
combine them. Both networks output Q-values for each action.

3.4 Ii#4: Multi-step learning

AEXIRESEHE RN BEITINR, BEBNES NG FIETESBootstrap(8E ZActor- critic )
Q/IAIE

(MC — sampling)A; = =° vF (Ryypi1 — b)

(bootstrap — sampling)Gy =1 + v % V(ser1) — V(st)

HIENARERERHEZERK: EELHERERER. ALEESMERK(EE 2B Multi-step targetdy
Hik.

~ . |

Do we have to choose just one n?
¥ Cut everywhere all at once!
t
Ar(sia0) = Sp Tt Ttr(se,an) — VI (se) +9"V (St4n) AT pp(sna) = 300 @AZ(St,at)

weighted combination of n-step returns

Tt

[E At /] AR EDQN A RS ENME R B A G 1T



R} = 2 Rejkn
B Z ERK R IR
(R} +;mazy Q; (Stin,a’) — Qo(St, Ar))?
3.5 ¢{#5: Distributional RL

AETMERBNZIFHRMNBEZRO—THENERAEMERRSHEMESR, EitDistributional
RLEAFAES M AR MERH#TRAUES . BEAXERENERECEE [Vinin, Vi |22 AN
ZHEFETTMERE, FABolzmannZHmRTMERREID T, BENFRREZNEE

1
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Figure 1. A distributional Bellman operator with a deterministic
reward function: (a) Next state distribution under policy m, (b)
Discounting shrinks the distribution towards 0, (¢) The reward
shifts it, and (d) Projection step (Section 4).
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Algorithm 1 Categorical Algorithm

input A transition z¢, at,7¢, Tr41, V¢ € [0, 1]
Q($t+1, a) = Zz Zipi($t+1, a)
0" « argmax, O(z41,a)
m; =0, i€0,...,N—1
forj€0,..., N—1do

# Compute the projection of T2 ; onto the support { z; }

A~ V .
Tzj < [re +7225] vy,

bj < (T2 — Vax)/Dz #b; € [0, N —1]
L [bj], u  [b;]
# Distribute probability of Tz $
my < my + pj(@e41,a”)(u — by)
M = M + D3 (T241,0) (b — ]
end for
output — > . m; log pi(x¢,a;) # Cross-entropy loss

3.6 EX#6: Noisy Nets

Q- learning=l HEDQNR, HAMTHAARZTERFN, MESHMNNWRRREER, KEFTHZE
€ — Greedyshlg, XERRH—FNoisyNet RIS EIG HNIRF RIS IE R IR R EE

Y= (Wx + b) + (bnoisy O] eb + Wnoisy ®© ew)m

IRAS B4 R A] A AIndependent Gaussian noise; Factorised Gaussian noiseff A=,

Baseline NoisyNet Improvement
Mean Median Mean Median (On median)

DQN 319 83 379 123 48%
Dueling 524 132 633 172 30%
A3C 293 80 347 9% 18%

Table 1: Comparison between the baseline DQN, Dueling and A3C and their NoisyNet version
in terms of median and mean human-normalised scores defined in Eq. (18). We report on the last
column the percentage improvement on the baseline in terms of median human-normalised score.



3.7 M & LiRsRER

B (Bu#s:Distributional RL) HRAVHRKREERIR N (BU#4:Multi-step learning) , HFIA (X
#1--Double Q- Learning) it EFHIBIRE

dif = (R} + 172,04 (Stins074,))

R ERER

Dxr (®-d7|d;)

B ERFEIEDEITBE R B TD-error, MEAXPHINMRKRECHKLIRK, ELLETR (B0
2: Prioritized replay) FHIMLIEREXH
pr o< (Dgr (®=dy||de))”

EITEREE (EX3#3: Dueling networks) HIESHIEHMESMERE D, REENFIENLEEER
A (K#6: Noisy Nets)

exp(vy(¢)+al,(¢,a)—iy (s))

% jeap(v)(¢)+al, (¢,0) @, (5))

p9(37 a)i =

4 L35
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Figure 1: Median human-normalized performance across
57 Atari games. We compare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any baseline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 5 points.
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Figure 2: Each plot shows, for several agents, the number of games where they have achieved at least a given fraction of human
performance, as a function of time. From left to right we consider the 20%, 50%, 100%, 200% and 500% thresholds. On the
first row we compare Rainbow to the baselines. On the second row we compare Rainbow to its ablations.
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Figure 4: Performance drops of ablation agents on all 57 Atari games. Performance is the area under the learning curve,
normalized relative to the Rainbow agent and DQN. Two games where DQN outperforms Rainbow are omitted. The ablation
leading to the strongest drop is highlighted for each game. The removal of either prioritization or multi-step learning reduces
performance across most games, but the contribution of each component varies substantially per game.
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5.1 451

1. RainbowiBLEREMIMIBHNEEZEERLF, BREHIER

2. TEHRISLIOG; HATSAM (B#H2: Prioritized replay) 5 (2i#4:Multi-step learning) &IEM
45 B O ERANEE B, (B0# 5:Distributional RLERFFAXIMELF, B2 éi‘é%%i’%f)”uﬁ%; Ei
B (B#6: Noisy Nets) BESBEFHNHPMAHERN, BENHTFARSHESE
underestimatefy, FFLA (EX#1--Double Q- Learning) MRHAREZE, (2X#3: Dueling
networks) RABEBEARK,

5.2 i1ig

EEERELSEMIINIIE, EEZMValue- basediQ-learningZiESREH T, MIRBEEPurely
policy- basedfyEiA (ELWITRPO), AXMMBIRZER . WENL. BIEER. MRIRAFHEHTT
£5, SZEMNNEFERZSIE, REREJUBRSEMNTSE. B2

In general, we believe that exposing the real game to the agent is a promising direction for
future research.

5.3 T ARME

RRIEXNNRRER, EXRSCIEREFIFEM TRZDirty work, RIIRZR, HRLIAE
BEARNZARE, URDAMLERIGZAEMEY . MERISERIEN, TFEIFEAK!
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