
 

 

Assignment: Reinforcement Learning and Deep Learning 
 
Contents 

 

Part 1: Q-learning (Snake) 
Provided Snake Environment 
Q-learning Agent 
Debug Convenience 

Part 2: Deep Learning (MNIST Fashion) 
Background 
Neural Network 
Implementation Details 
Testing 
What to Report 
Warning/Hints 

Deliverables 
Report Checklist 

 
Part 1: Q-learning (Snake) 

 
Snake is a famous video game originated in the 1976 arcade game Blockade. The player uses up, down, left and right to 
control the snake which grows in length(when it eats the food), with the snake body and walls around the environment being 
the primary obstacle. In this assignment, you will train AI agents using reinforcement learning to play a simple version of 
the game snake. You will implement a TD version of the Q-learning algorithm. 

 

Image from Wikipedia 
 
 

Provided Snake Environment 
 

Snake 
 

In this assignment, the size of the entire game board is 560x560. The green rectangle is the snake agent and the red rectangle 
is the food. Snake head is marked with a thicker boarder for easier recognition. Food is generated randomly on board once 
the initial food is eaten. The size for every side of wall (filled with blue) is 40. The snake head, body segment and food have 
the same size of 40x40. Snake moves with a speed of 40 per frame. In this setup, the entire board that our snake agent can 
move has a size of 480x480 and can be treated as a 12x12 grid. Every time it eats a food, the points increases 1 and its body 
grows one segment. Before implementing the Q-learning algorithm, we must first define Snake as a Markov Decision 

 

 

 

 

https://en.wikipedia.org/wiki/Snake_(video_game_genre)


 

 

Process (MDP). Note in Q-learning, state variables do not need to represent the whole board, it only needs to 
represent enough information to let the agent make decisions.(So once you get environment state, you need to convert 
it to the state space as defined below). Also, the smaller the state space, the more quickly the agent will be able to 
explore it all. 

State: A tuple (adjoining_wall_x, adjoining_wall_y, food_dir_x, food_dir_y, adjoining_body_top, 
adjoining_body_bottom, adjoining_body_left, adjoining_body_right). 

[adjoining_wall_x, adjoining_wall_y] gives whether there is wall next to snake head. It has 9 states: 
adjoining_wall_x: 0 (no adjoining wall on x axis), 1 (wall on snake head left), 2 (wall on snake head right) 
adjoining_wall_y: 0 (no adjoining wall on y axis), 1 (wall on snake head top), 2 (wall on snake head bottom) 
(Note that [0, 0] is also the case when snake runs out of the 480x480 board) 
[food_dir_x, food_dir_y] gives the direction of food to snake head. It has 9 states: 
food_dir_x: 0 (same coords on x axis), 1 (food on snake head left), 2 (food on snake head right) 
food_dir_y: 0 (same coords on y axis), 1 (food on snake head top), 2 (food on snake head bottom) 
[adjoining_body_top, adjoining_body_bottom, adjoining_body_left, adjoining_body_right] checks if there 
is snake body in adjoining square of snake head. It has 8 states: 
adjoining_body_top: 1 (adjoining top square has snake body), 0 (otherwise) 
adjoining_body_bottom: 1 (adjoining bottom square has snake body), 0 (otherwise) 
adjoining_body_left: 1 (adjoining left square has snake body), 0 (otherwise) 
adjoining_body_right: 1 (adjoining right square has snake body), 0 (otherwise) 

Actions: Your agent's actions are chosen from the set {up, down, left, right}. 
Rewards: +1 when your action results in getting the food (snake head position is the same as the food position), -1 
when the snake dies, that is when snake head hits the wall, its body segment or the head tries to move towards its 
adjacent body segment (moving backwards). -0.1 otherwise (does not die nor get food). 

 
Q-learning Agent 

 

TrainedAgent 
 

In this part of the assignment, you will create a snake agent to learn how to get food as many as possible without dying. In 
order to do this, you must use Q-learning. Implement the TD Q-learning algorithm and train it on the MDP outlined above. 

Q(s, a) ← Q(s, a) + α(R(s) + γ max Q(s′, a′) − Q(s, a)) 
a′ 

Also, use the exploration policy mentioned in class and use 1 for R+: 

 
During training, your agent needs to update your Q-table first (this step is skipped when the initial state and action are 
None), get the next action using the above exploration policy, and then update N-table with that action. If the game is over, 
that is when the dead varaible becomes true, you only need to update your Q table and reset the game. During testing, your 
agent only needs to give the best action using Q-table. Train it for as long as you deem necessary, counting the average 
number of points your agent can get. Your average over 1000 test games should be at least 20. For grading purposes, 
please submit code with the above exploration policy, state configurations and reward model. We will initialize your 
agent class with different parameters (Ne, C, gamma), initialize environment with different initial snake and food 
postion and compare the Q-table result at the point when the first food is eaten during training(see snake_main.py 
for Q-table generation detail). 

 
Once you have this working, you will need to adjust the learning rate, α (how about a fixed learning rate or other C value?), 
the discount factor, γ, and the settings that you use to trade off exploration vs. exploitation. 

 
In your report, please include the values of α, γ, and any parameters for your exploration settings that you used, and discuss 
how you obtained these values. What changes happen in the game when you adjust any of these variables? How many 

 

 



 

 

games does your agent need to simulate before it learns an optimal policy? After your Q-learning seems to have converged 
to a good policy, run your algorithm on a large number of test games (≥1000) and report the average number of points. 

 
In addition to discussing these things, try adjusting the state configurations that were defined above. If you think it would be 
beneficial, you may also change the reward model to provide more informative feedback to the agent. Try to find 
modifications that allow the agent to learn a better policy than the one you found before. In your report, describe the changes 
you made and the new number of points the agent was able to get. What effect did this have on the time it takes to train your 
agent? Include any other interesting observations. 

 
 

Tips 
 

Initially, all the Q value estimates should be 0. 
The learning rate should decay as C/(C+N(s,a)), where N(s,a) is the number of times you have seen the given the 
state-action pair. 
When adjusting state configurations, try to make state numbers as small as possible to make the training easier. If the 
state numbers are too large. The snake may stuck in an infinite loop. 
In a reasonable implementation, you should see your average points increase in seconds. 
You can run python snake_main.py --human to play the game yourself. 

 
Debug Convenience 

 
For debug convenience, we provide three debug examples of Q-table for you. Each Q-table is generated exactly after 
snake eats the first food in training process. More specifically, it's the first time when snake reaches exactly 1 point in 
training, see how the Q-table is generated and saved during training in snake_main.py. For example, you can run diff 
checkpoint.npy checkpoint1.npy to see whether there is a difference. The only difference of these three debug examples is 
the setting of parameters(initialized position of snake head and food, Ne, C and gamma). 

Notice that for passing the autograder, if the scores of actions from exploration function are equal, the priority 
should be right > left > down > up. 

 
 

[Debug Example 1] snake_head_x=200, snake_head_y=200, food_x=80, food_y=80, Ne=40, C=40, gamma=0.7 
checkpoint1.npy 
[Debug Example 2] snake_head_x=200, snake_head_y=200, food_x=80, food_y=80, Ne=20, C=60, gamma=0.5 
checkpoint2.npy 
[Debug Example 3] snake_head_x=80, snake_head_y=80, food_x=200, food_y=200, Ne=40, C=40, gamma=0.7 
checkpoint3.npy 

Note that for one part of the autograder, we will run your training process on different settings of parameters and 
compare the Q-table generated exactly when snake reaches 1 point first time in training, with ours. So making sure 
you can pass these debug examples will help you a lot for passing this part of the autograder. 

In addition, for the other part of autograder, we will test your performance using your q_agent.npy and agent.py. 
Average points over 20 points on 1000 test games should be able to obatin full credit for this part. 

 
 

Part 2: Deep Learning (MNIST Fashion) 
Created by Austin Bae (Modified from Ryley Higa) 

 
Background 

 
By now you should be familiar with the MNIST dataset from MP3. In MP3, we trained a model on this dataset using Linear 
Classifiers such as Naive Bayes and Perceptron. This time around, we will implement a fully connected neural network from 
scratch on the same dataset we used in MP3. 

Your task is to build a 4-layer neural network with 256 hidden nodes per layer except the last layer which should have 10 
(number of classes) layers. You are going to use a method called Minibatch Gradient Descent, which runs for a given 
number of iterations (epochs) and does the following per epoch: 

1. Shuffle the training data 
2. Split the data into batches (use batch size of 200) 
3. For each batch (subset of data): 

feed batch into the 4-layer neural network 
Compute loss and update weights 

4. Observe the total loss and go to next iteration 
 

The Neural Network 
 

Neural Network Architecture 

https://courses.grainger.illinois.edu/cs440/sp2019/mp4/tables/checkpoint1.npy
https://courses.grainger.illinois.edu/cs440/sp2019/mp4/tables/checkpoint2.npy
https://courses.grainger.illinois.edu/cs440/sp2019/mp4/tables/checkpoint3.npy


 

 

 

 
One Layer Neural Network 

For this assignment, you will build a 4-layer, fully connected Neural Network. You can think about a fully-connected Neural 
Network as a series of multiple interconnected layers, in which are basically a group of nodes (See the diagram above). You 
can think of each layer as the perceptron model you implemented in MP3, but instead of one perceptron, you have multiple 
perceptrons that feed the output as the input to another. 

 
Neural Network Layer 

 
 
 
 

 
This is what each layer in a Neural Network looks like. Note that there are two directions: forward and backward 
propagation. Forward Propagation uses both the inputs (Ain) and the weights (W, b) specific to that layer to compute the 
output (Aout) to the next layer. Backward Propagation computes the gradient (derivative) of the loss function with respect 
to the weights at each layer. 

Inside of each propagation, there are two functions that both compute forward and backward. In general, Affine 
transformations compute the affine output (Z) by doing some sort of computation with the input and weights (like matrix 
multiply). Nonlinear Activation functions then take that affine output and transform it. There are numerous activation 
functions out there, but for our assignment we will be using ReLU (Rectified Linear Units) which is just simply R(x) = 
max(0, x). The backwards functions will compute the gradients of the inputs with respect to loss. 

Then, at the last layer, the output should be the classification computed by your Neural Network. You have to then calculate 
the loss, which would represent how well your network did in classifying correctly. The model's job is to minimize this loss, 
since the better it does, the lower loss it will have. Again, we can use many different types of loss functions, but we will use 
Cross-entropy for this assignment. 

 
Implementation Details 

 

 



 

 

You are to implement these 8 different functions inside of neural_network.py. You will only have to edit and submit this 
file. Do not import any non-standard Python libraries other than numpy, or you will result in getting a 0 on the 
autograder. 

 

affine_forward(A, W, b) 
Inputs: A (data with size n,d), W (weights with size d,d'), b (bias with size d') 

 

 

Outputs: Z (affine output with size n,d'), cache (tuple of the original inputs) 
affine_backward(dZ, cache) 

Inputs: dZ (gradient of Z), cache (of the forward operation) 

 

 

Outputs: dA, dW, db (gradients with respect to loss) 
relu_forward(Z) 

Inputs: Z (affine output with size n,d') 
R(Z) = max(0,Z) : basically sets all negative values in matrix to 0 
Outputs: A (Relu Output with size n,d'), cache object (Z) 

relu_backward(dA, cache) 
Inputs: dA (gradient of A), cache 
dZij = 0 if Zij = 0. else dZij = dAij. Basically if Z was zeroed out at a point, then dZ should also be zeroed out 
since it shouldn't contribute to the gradient at that location. 
Outputs: dZ (gradient of Z) 

cross_entropy(F, y) 
Inputs: F (logits with size n, num_classes), y (actual class label of data with size n) 

 

Fik refers to the score of classifying row i as class k. Fiyi refers to the score of F classifying row i as the actual 
class given by yi. So if the actual label for row i was 7, then Fiyi = Fi7. The 1{j = yi} function in the gradient 
calculation is just a binary function that outputs either a 0 or a 1 if the condition is met. 
Output: loss, dF (gradient of the logits) 

four_nn() - 4 layer neural network function 
This function's inputs and outputs are up to you, and it won't be autograded 
The Neural Network must have 4 layers, with (256, 256, 256, and num_classes) nodes per layers 
In this function, you should use all of your helper functions above 
This should be called inside of both minibatch_gd() and test_nn() 

Here is the pseudocode for a 3 layer neural network, as reference. 

 

 

 

 

 

 



 

 

 

 
You should use a learning rate (eta) of 0.1 

minibatch_gd(epoch, w1, w2, w3, w4, b1, b2, b3, b4, x_train, y_train, num_classes, shuffle=True) 
This function will implement your minibatch gradient descent (model training). 
Use batch size of 200. You can assume that len(x_train) will always be divisible by 200. 
Inputs: 

epoch: number of iterations 
w1, w2, w3, w4: Your weights corresponding to each of the layers 
b1, b2, b3, b3: Your biases corresponding to each of the layers 
x_train, y_train: Numpy arrays of the features and labels 
num_classes: number of classes. This should be 10 for our dataset. Reason we pass this as a parameter is 
that your model should be able to run for datasets of any size. 
shuffle: boolean flag indicating whether you should shuffle your data at each epoch. By default this is set 
to True. This will be set to false during testing/autograding, so adjust your code so that it will shuffle only 
if this boolean flag is set to True. 

Here is a pseudocode for reference: 
 

Outputs: 
all the modified weights, biases (w1 ~ w4, b1 ~ b4) 
losses: a list of total loss at each epoch. Note that this will be a list with length = epoch 

test_nn(w1, w2, w3, w4, b1, b2, b3, b4, x_test, y_test, num_classes) 
This function will evaluate how well your trained model performs in classifying test data. 
Inputs: 

w1 ~ w4, b1 ~ b4: trained weights/biases at each layer 
x_test, y_test: Numpy arrays of the test features and labels 
num_classes: Number of classes (10) 

Outputs: Average Classification Rate, Average Classification Rate per Class (List with size=num_classes) 
 

Testing 
 

We have provided you with a unit testing script nn_test.py that will check if your individual functions produce the right 
output. Passing these unit tests are a good but incomplete measure of whether or not your functions are correct. This test 
script also checks if your minibatch gradient descent works for a smaller dataset, so you should confirm that you pass these 
tests before running nn_main.py on the actual MNIST data. Feel free to modify this file as you need, this file won't be 
submitted nor graded. 

 

 



 

 

What to Report 
 

Run your minibatch gradient for 10, 30, and 50 epochs. You should start with clean generated weights/biases for each run. 
For each run, report: 

1. Confusion Matrix 
2. Average Classification Rate 
3. Runtime of your minibatch gradient function 

At the end of 50 epochs, include a graph that plots epochs vs losses. 
Also report any interesting observations, and possible explanations for those observations. 

 
 

Extra Credit Opportunity 
 

Convolutional Neural Network (CNN) is a different type of Neural Network that is very popular, especially in image 
processing. Implement a CNN using the same MNIST fashion dataset using any deep learning frameworks of your choice 
(Tensorflow, Pytorch, Keras, etc). You may reference online materials, but make sure to cite them as necessary! 

Write a paragraph on how CNNs work, what you implemented, and the results of your CNN. Compare it to the performance 
of your fully-connected 4 layer network. Report the confusion matrix, average classification rate, and average classification 
rate per class of the test data once your model converges. The extra credit will be capped to 10% of the entire MP grade. 

Submit your file as nn_extracredit.ext, ext being the extension of the file. You do not have to submit any runtime 
information (modules/metadata) but make sure to describe your algorithm in the report. 

 
Warning/Hints 

 
One disadvantage of Neural Networks is that they may take a long time to compute. Given that fact, correctness of your 
algorithms may not be sufficient to successfully complete this assignment. Use numpy functions (matrix multiply, 
broadcasting) as much as possible as opposed to native python loops, as this will significantly decrease your runtime. 

With decently optimized code, we were able to get under 10 seconds per epoch on a 2015 Macbook Pro, and roughly under 
80 seconds on EWS. We highly recommend you running the code on a machine faster than EWS, but EWS should give you 
the highest-bound on computation time. We will cut off computation for autograding at around 120 seconds per epoch on 
EWS. Also, running your model for 50 epochs will take somewhere around 10 mins ~ 1 hour. If you do this last minute you 
may not be able to run your computations on time. There will be no excuses for missing the deadline. 

We will also grade your code on a different dataset that will have different number of rows (but divisible by 200), features, 
and target classes. So it is very important that you don't hardcode any numbers into your algorithms, and it should be able to 
support data of any size. Provided hyperparameters (number of layers, number of nodes per layer, learning rate, batch size) 
should remain the same. 

 

Provided Code Skeleton 

We have provided skeleton.zip with the descriptions below. For Part 1, do not import any non-standard libraries except 
pygame (pygame version 1.9.4) and numpy. For Part 2, do not import any non-standard library except numpy. Failure 
to do so will result in a 0 in the autograder. 

 
Part 1 

 
snake.py - This is the file that defines the snake environment and creates the GUI for the game. 
utils.py - This is the file that defines some of the discretization constants as defined above and contains the functions 
to save and load models. 
agent.py This is the file where you will be doing all of your work. This file contains the Agent class. This is the agent 
you will implement to act in the snake environment. Below is the list of instance variables and functions in the Agent 
class. 

 
 

self._train: This is a boolean flag variable that you should use to determine if the agent is in train or test mode. 
In train mode, the agent should explore(based on exploration function) and exploit based on the Q table. In test 
mode, the agent should purely exploit and always take the best action. 
train(): This function sets the self._train to be True. This is called before the training loop is run in 
snake_main.py 
test(): This function sets the self._train to be False. This is called before the testing loop is run in 
snake_main.py 
save_model(): This function saves the self.Q table. This is called after the training loop in snake_main.py. 
load_model(): This function loads the self.Q table. This is called before the testing loop in snake_main.py. 
act(state, points, dead): This is the main function you will implement and is called repeatedly by 
snake_main.py while games are being run. "state" is the state from the snake environment and is a list of 

https://courses.grainger.illinois.edu/cs440/sp2019/mp4/skeleton.zip


 

 

[snake_head_x, snake_head_y, snake_body, food_x, food_y](Notice that in act 
function, you first need to discretize this into the state configuration we 
defined above). "points" is the number of food the snake has eaten. "dead" is a 
boolean indicating if the snake is dead. "points", "dead" should be used to define 
your reward function. act should return a number from the set of {0,1,2,3}. 
Returning 0 will move the snake agent up, returning 1 will move the snake agent 
down, and returning 2 will move the agent left, returning 3 will move the agent 
right. If self._train is True, this function should update the Q table and return an 
action(Notice that if the scores of actions from exploration function are equal, 
the priority should be right > left > down > up). If self._train is False, the agent 
should simply return the best action based on the Q table. 

 
 

snake_main.py - This is the main file that starts the program. This file runs the snake 
game with your implemented agent acting in it. The code runs a number of training 
games, then a number of testing games, and then displays example games at the end. 

Do not modify the provided code. You will only have to modify agent.py 
 

Part 2 
 

neural_network.py - The only file that you will have to modify. Descriptions of the 
functions are in the descriptions above. 
nn_test.py - Unit test module for you to use. Simply 
run it using python nn_test.py. nn_main.py - Main 
function that will run your code written in 
nueral_network.py. data - folder that contains the train 
and test numpy files, exactly the same from MP3 
tests - You don't have to touch this since all the text parsing has been done for you in nn_test.py 

You can modify the test/main functions as long as your inputs/outputs for all functions inside of 
neural_network.py is consistent with the instructions. Note that only neural_network.py will be 
submitted & graded. 

 

Deliverables 

Please submit only the following files. 

agent.py with the same exploration policy, state configurations and reward model mentioned above. 
q_agent.npy the best numpy array trained by you with the same state configurations 
mentioned above. (Can be saved by passing "--model_name q_agent.npy" to 
snake_main.py). Note that this model above should work without modifying any 
code files other than agent.py. 
neural_network.py with all the functions for part 2. 
report.pdf 

 

Report Checklist 

Part 1 
 

1. Briefly describe the 
implementation of 
your agent snake. 
How does the agent 
act during train 
phase? 
How does the agent act during test phase? 

2. Use Ne, C (or fixed alpha?), gamma that you believe to be the best. After training has 
converged, run your algorithm on 1000 test games and report the average point. 

Give the value of Ne, C (or fixed 
alpha) you believe to be the best. 
Report the training convergence time. 
Report average point on 1000 test games. 

3. Describe the changes you made to your MDP(state configuration, exploration policy and 
reward model), at least make changes to state configuration. Report the performance 
(the average points on 1000 test games). Notice that training your modified state space 



 

 

should give you at least 10 points in average for 1000 test games. Explain why these 
changes are reasonable, observe how snake acts after changes and analyze the positive 
and negative effects they have. Notice again, make sure your submitted agent.py and 
q_agent.npy are without these changes and your changed MDP should not be 
submitted. 

 
Part 2 

 
1. Briefly describe any optimizations you performed on your functions for faster runtime. 
2. Report Confusion Matrix, Average Classification Rate, and Runtime of Minibatch 

gradient for 10, 30, 50 epochs. This means that you should have 3x3=9 total items in this 
section. 

3. Add a graph that plots epochs vs losses at that epoch. (For 50 epochs) 
4. Describe any trends that you see. Is this expected or surprising? What do you 

think is the explanation for the observations? 
5. Report Extra Credit section, if any. 

 


	Part 1: Q-learning (Snake)
	Provided Snake Environment
	Process (MDP). Note in Q-learning, state variables do not need to represent the whole board, it only needs to represent enough information to let the agent make decisions.(So once you get environment state, you need to convert it to the state space as...

	Q-learning Agent
	Tips
	Debug Convenience
	Notice that for passing the autograder, if the scores of actions from exploration function are equal, the priority should be right > left > down > up.


	Part 2: Deep Learning (MNIST Fashion)
	Background
	The Neural Network
	Neural Network Architecture
	Neural Network Layer

	Implementation Details
	You should use a learning rate (eta) of 0.1

	Testing
	What to Report
	Extra Credit Opportunity

	Warning/Hints

	Provided Code Skeleton
	Part 1
	snake_main.py
	snake_main.py
	Part 2

	Deliverables
	report.pdf
	Part 2


