#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-24 22:18:18 LastEditor: John LastEditTime: 2021-03-31 14:51:09 Discription: Environment: ''' import torch import torch.nn as nn import numpy as np import random,math import torch.optim as optim from common.model import MLP from common.memory import ReplayBuffer class HierarchicalDQN: def __init__(self,state_dim,action_dim,cfg): self.state_dim = state_dim self.action_dim = action_dim self.gamma = cfg.gamma self.device = cfg.device self.batch_size = cfg.batch_size self.frame_idx = 0 self.epsilon = lambda frame_idx: cfg.epsilon_end + (cfg.epsilon_start - cfg.epsilon_end ) * math.exp(-1. * frame_idx / cfg.epsilon_decay) self.policy_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device) self.meta_policy_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device) self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr) self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr) self.memory = ReplayBuffer(cfg.memory_capacity) self.meta_memory = ReplayBuffer(cfg.memory_capacity) self.loss_numpy = 0 self.meta_loss_numpy = 0 self.losses = [] self.meta_losses = [] def to_onehot(self,x): oh = np.zeros(self.state_dim) oh[x - 1] = 1. return oh def set_goal(self,state): if random.random() > self.epsilon(self.frame_idx): with torch.no_grad(): state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0) goal = self.meta_policy_net(state).max(1)[1].item() else: goal = random.randrange(self.state_dim) return goal def choose_action(self,state): self.frame_idx += 1 if random.random() > self.epsilon(self.frame_idx): with torch.no_grad(): state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0) q_value = self.policy_net(state) action = q_value.max(1)[1].item() else: action = random.randrange(self.action_dim) return action def update(self): self.update_policy() self.update_meta() def update_policy(self): if self.batch_size > len(self.memory): return state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size) state_batch = torch.tensor(state_batch,dtype=torch.float) action_batch = torch.tensor(action_batch,dtype=torch.int64).unsqueeze(1) reward_batch = torch.tensor(reward_batch,dtype=torch.float) next_state_batch = torch.tensor(next_state_batch, dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch)) q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1) next_state_values = self.policy_net(next_state_batch).max(1)[0].detach() expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch) loss = nn.MSELoss()(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() self.loss_numpy = loss.detach().numpy() self.losses.append(self.loss_numpy) def update_meta(self): if self.batch_size > len(self.meta_memory): return state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.meta_memory.sample(self.batch_size) state_batch = torch.tensor(state_batch,dtype=torch.float) action_batch = torch.tensor(action_batch,dtype=torch.int64).unsqueeze(1) reward_batch = torch.tensor(reward_batch,dtype=torch.float) next_state_batch = torch.tensor(next_state_batch, dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch)) q_values = self.meta_policy_net(state_batch).gather(dim=1, index=action_batch).squeeze(1) next_state_values = self.meta_policy_net(next_state_batch).max(1)[0].detach() expected_q_values = reward_batch + 0.99 * next_state_values * (1-done_batch) meta_loss = nn.MSELoss()(q_values, expected_q_values) self.meta_optimizer.zero_grad() meta_loss.backward() for param in self.meta_policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.meta_optimizer.step() self.meta_loss_numpy = meta_loss.detach().numpy() self.meta_losses.append(self.meta_loss_numpy) def save(self, path): torch.save(self.policy_net.state_dict(), path+'policy_checkpoint.pth') torch.save(self.meta_policy_net.state_dict(), path+'meta_checkpoint.pth') def load(self, path): self.policy_net.load_state_dict(torch.load(path+'policy_checkpoint.pth')) self.meta_policy_net.load_state_dict(torch.load(path+'meta_checkpoint.pth'))