import random import math import torch import torch.optim as optim import torch.nn.functional as F from DQN_cnn.memory import ReplayBuffer from DQN_cnn.model import CNN class DQNcnn: def __init__(self, screen_height,screen_width, action_dim, cfg): self.device = cfg.device self.action_dim = action_dim self.gamma = cfg.gamma # e-greedy策略相关参数 self.actions_count = 0 self.epsilon = 0 self.epsilon_start = cfg.epsilon_start self.epsilon_end = cfg.epsilon_end self.epsilon_decay = cfg.epsilon_decay self.batch_size = cfg.batch_size self.policy_net = CNN(screen_height, screen_width, action_dim).to(self.device) self.target_net = CNN(screen_height, screen_width, action_dim).to(self.device) self.target_net.load_state_dict(self.policy_net.state_dict()) # target_net的初始模型参数完全复制policy_net self.target_net.eval() # 不启用 BatchNormalization 和 Dropout self.optimizer = optim.RMSprop(self.policy_net.parameters(),lr = cfg.lr) # 可查parameters()与state_dict()的区别,前者require_grad=True self.loss = 0 self.memory = ReplayBuffer(cfg.memory_capacity) def choose_action(self, state): '''选择动作 Args: state [array]: [description] Returns: action [array]: [description] ''' self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.actions_count / self.epsilon_decay) self.actions_count += 1 if random.random() > self.epsilon: with torch.no_grad(): q_value = self.policy_net(state) # q_value比如tensor([[-0.2522, 0.3887]]) # tensor.max(1)返回每行的最大值以及对应的下标, # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) # 所以tensor.max(1)[1]返回最大值对应的下标,即action action = q_value.max(1)[1].view(1, 1) # 注意这里action是个张量,如tensor([1]) return action else: return torch.tensor([[random.randrange(self.action_dim)]], device=self.device, dtype=torch.long) def update(self): if len(self.memory) < self.batch_size: return transitions = self.memory.sample(self.batch_size) # Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for # detailed explanation). This converts batch-array of Transitions # to Transition of batch-arrays. batch = self.memory.Transition(*zip(*transitions)) # Compute a mask of non-final states and concatenate the batch elements # (a final state would've been the one after which simulation ended) non_final_mask = torch.tensor(tuple(map(lambda s: s is not None, batch.state_)), device=self.device, dtype=torch.bool) non_final_state_s = torch.cat([s for s in batch.state_ if s is not None]) state_batch = torch.cat(batch.state) action_batch = torch.cat(batch.action) reward_batch = torch.cat(batch.reward) # tensor([1., 1.,...,]) # Compute Q(s_t, a) - the model computes Q(s_t), then we select the # columns of actions taken. These are the actions which would've been taken # for each batch state according to policy_net state_action_values = self.policy_net( state_batch).gather(1, action_batch) #tensor([[ 1.1217],...,[ 0.8314]]) # Compute V(s_{t+1}) for all next states. # Expected values of actions for non_final_state_s are computed based # on the "older" target_net; selecting their best reward with max(1)[0]. # This is merged based on the mask, such that we'll have either the expected # state value or 0 in case the state was final. state__values = torch.zeros(self.batch_size, device=self.device) state__values[non_final_mask] = self.target_net( non_final_state_s).max(1)[0].detach() # Compute the expected Q values expected_state_action_values = (state__values * self.gamma) + reward_batch # tensor([0.9685, 0.9683,...,]) # Compute Huber loss self.loss = F.smooth_l1_loss( state_action_values, expected_state_action_values.unsqueeze(1)) # .unsqueeze增加一个维度 # Optimize the model self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise you’d just accumulate the gradients from all loss.backward() calls). self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation. for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters. if __name__ == "__main__": dqn = DQN()