import torch import torch.nn as nn import torch.nn.functional as F from collections import deque import random from torch.distributions import Categorical import gym import numpy as np class SoftQ: def __init__(self,n_actions,model,memory,cfg): self.memory = memory self.alpha = cfg.alpha self.gamma = cfg.gamma # discount factor self.batch_size = cfg.batch_size self.device = torch.device(cfg.device) self.policy_net = model.to(self.device) self.target_net = model.to(self.device) self.target_net.load_state_dict(self.policy_net.state_dict()) # copy parameters self.optimizer = torch.optim.Adam(self.policy_net.parameters(), lr=cfg.lr) self.losses = [] # save losses def sample_action(self,state): state = torch.FloatTensor(state).unsqueeze(0).to(self.device) with torch.no_grad(): q = self.policy_net(state) v = self.alpha * torch.log(torch.sum(torch.exp(q/self.alpha), dim=1, keepdim=True)).squeeze() dist = torch.exp((q-v)/self.alpha) dist = dist / torch.sum(dist) c = Categorical(dist) a = c.sample() return a.item() def predict_action(self,state): state = torch.tensor(np.array(state), device=self.device, dtype=torch.float).unsqueeze(0) with torch.no_grad(): q = self.policy_net(state) v = self.alpha * torch.log(torch.sum(torch.exp(q/self.alpha), dim=1, keepdim=True)).squeeze() dist = torch.exp((q-v)/self.alpha) dist = dist / torch.sum(dist) c = Categorical(dist) a = c.sample() return a.item() def update(self): if len(self.memory) < self.batch_size: # when the memory capacity does not meet a batch, the network will not update return state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size) state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states) action_batch = torch.tensor(np.array(action_batch), device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1) reward_batch = torch.tensor(np.array(reward_batch), device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1) next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float) # shape(batchsize,n_states) done_batch = torch.tensor(np.array(done_batch), device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1) # print(state_batch.shape,action_batch.shape,reward_batch.shape,next_state_batch.shape,done_batch.shape) with torch.no_grad(): next_q = self.target_net(next_state_batch) next_v = self.alpha * torch.log(torch.sum(torch.exp(next_q/self.alpha), dim=1, keepdim=True)) y = reward_batch + (1 - done_batch ) * self.gamma * next_v loss = F.mse_loss(self.policy_net(state_batch).gather(1, action_batch.long()), y) self.losses.append(loss) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def save_model(self, path): from pathlib import Path # create path Path(path).mkdir(parents=True, exist_ok=True) torch.save(self.target_net.state_dict(), path+'checkpoint.pth') def load_model(self, path): self.target_net.load_state_dict(torch.load(path+'checkpoint.pth')) for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): param.data.copy_(target_param.data)