#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-04-29 12:59:22 LastEditor: JiangJi LastEditTime: 2021-05-06 01:47:36 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path = os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import gym import torch import datetime from SAC.env import NormalizedActions from SAC.agent import SAC from common.utils import save_results, make_dir from common.plot import plot_rewards curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time class SACConfig: def __init__(self) -> None: self.algo = 'SAC' self.env = 'Pendulum-v0' self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # path to save models self.train_eps = 300 self.train_steps = 500 self.eval_eps = 50 self.eval_steps = 500 self.gamma = 0.99 self.mean_lambda=1e-3 self.std_lambda=1e-3 self.z_lambda=0.0 self.soft_tau=1e-2 self.value_lr = 3e-4 self.soft_q_lr = 3e-4 self.policy_lr = 3e-4 self.capacity = 1000000 self.hidden_dim = 256 self.batch_size = 128 self.device=torch.device("cuda" if torch.cuda.is_available() else "cpu") def env_agent_config(cfg,seed=1): env = NormalizedActions(gym.make("Pendulum-v0")) env.seed(seed) action_dim = env.action_space.shape[0] state_dim = env.observation_space.shape[0] agent = SAC(state_dim,action_dim,cfg) return env,agent def train(cfg,env,agent): print('Start to train !') print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}') rewards = [] ma_rewards = [] # moveing average reward for i_ep in range(cfg.train_eps): state = env.reset() ep_reward = 0 for i_step in range(cfg.train_steps): action = agent.policy_net.get_action(state) next_state, reward, done, _ = env.step(action) agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state ep_reward += reward if done: break if (i_ep+1)%10==0: print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}") rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards, ma_rewards def eval(cfg,env,agent): print('Start to eval !') print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}') rewards = [] ma_rewards = [] # moveing average reward for i_ep in range(cfg.eval_eps): state = env.reset() ep_reward = 0 for i_step in range(cfg.eval_steps): action = agent.policy_net.get_action(state) next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward if done: break if (i_ep+1)%10==0: print(f"Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.3f}") rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete evaling!') return rewards, ma_rewards if __name__ == "__main__": cfg=SACConfig() # train env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) # eval env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)