#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:21:53 LastEditor: John LastEditTime: 2021-10-16 00:34:13 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加父路径到系统路径sys.path import gym import torch import datetime from itertools import count from PolicyGradient.agent import PolicyGradient from common.plot import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class PGConfig: def __init__(self): self.algo = "PolicyGradient" # 算法名称 self.env = 'CartPole-v0' # 环境名称 self.result_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/results/' # 保存结果的路径 self.model_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/models/' # 保存模型的路径 self.train_eps = 300 # 训练的回合数 self.test_eps = 30 # 测试的回合数 self.batch_size = 8 self.lr = 0.01 # 学习率 self.gamma = 0.99 self.hidden_dim = 36 # dimmension of hidden layer self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # check gpu def env_agent_config(cfg,seed=1): env = gym.make(cfg.env) env.seed(seed) state_dim = env.observation_space.shape[0] agent = PolicyGradient(state_dim,cfg) return env,agent def train(cfg,env,agent): print('Start to eval !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') state_pool = [] # 存放每batch_size个episode的state序列 action_pool = [] reward_pool = [] rewards = [] ma_rewards = [] for i_ep in range(cfg.train_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state_pool.append(state) action_pool.append(float(action)) reward_pool.append(reward) state = next_state if done: print('Episode:', i_ep, ' Reward:', ep_reward) break if i_ep > 0 and i_ep % cfg.batch_size == 0: agent.update(reward_pool,state_pool,action_pool) state_pool = [] # 每个episode的state action_pool = [] reward_pool = [] rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('complete training!') return rewards, ma_rewards def eval(cfg,env,agent): print('Start to eval !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] ma_rewards = [] for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state = next_state if done: print('Episode:', i_ep, ' Reward:', ep_reward) break rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('complete evaling!') return rewards, ma_rewards if __name__ == "__main__": cfg = PGConfig() # train env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) # eval env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)