#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-12 16:58:16 LastEditor: John LastEditTime: 2022-08-04 22:22:16 Discription: Environment: ''' import numpy as np from collections import defaultdict import torch import math class Sarsa(object): def __init__(self, n_actions,cfg): self.n_actions = n_actions self.lr = cfg.lr self.gamma = cfg.gamma self.sample_count = 0 self.epsilon_start = cfg.epsilon_start self.epsilon_end = cfg.epsilon_end self.epsilon_decay = cfg.epsilon_decay self.Q = defaultdict(lambda: np.zeros(n_actions)) # Q table def sample(self, state): self.sample_count += 1 self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.sample_count / self.epsilon_decay) # The probability to select a random action, is is log decayed best_action = np.argmax(self.Q[state]) action_probs = np.ones(self.n_actions, dtype=float) * self.epsilon / self.n_actions action_probs[best_action] += (1.0 - self.epsilon) action = np.random.choice(np.arange(len(action_probs)), p=action_probs) return action def predict(self,state): return np.argmax(self.Q[state]) def update(self, state, action, reward, next_state, next_action,done): Q_predict = self.Q[state][action] if done: Q_target = reward # 终止状态 else: Q_target = reward + self.gamma * self.Q[next_state][next_action] # 与Q learning不同,Sarsa是拿下一步动作对应的Q值去更新 self.Q[state][action] += self.lr * (Q_target - Q_predict) def save(self,path): '''把 Q表格 的数据保存到文件中 ''' import dill torch.save( obj=self.Q, f=path+"sarsa_model.pkl", pickle_module=dill ) def load(self, path): '''从文件中读取数据到 Q表格 ''' import dill self.Q =torch.load(f=path+'sarsa_model.pkl',pickle_module=dill)