#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-11-07 18:10:37 LastEditor: JiangJi LastEditTime: 2022-08-29 23:33:31 Discription: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add to system path import gym import datetime import argparse from common.utils import all_seed from common.models import MLP from common.memories import ReplayBufferQue from DoubleDQN.double_dqn import DoubleDQN from common.launcher import Launcher from envs.register import register_env class Main(Launcher): def get_args(self): ''' hyperparameters ''' curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='DoubleDQN',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps") parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor") parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon") parser.add_argument('--lr',default=0.0001,type=float,help="learning rate") parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity") parser.add_argument('--batch_size',default=64,type=int) parser.add_argument('--target_update',default=4,type=int) parser.add_argument('--hidden_dim',default=256,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--seed',default=1,type=int,help="seed") parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not") parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/", 'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/", } args = {**vars(args),**default_args} # type(dict) return args def env_agent_config(self,cfg): ''' create env and agent ''' register_env(cfg['env_name']) env = gym.make(cfg['env_name']) if cfg['seed'] !=0: # set random seed all_seed(env,seed=cfg["seed"]) try: # state dimension n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n')) except AttributeError: n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape')) n_actions = env.action_space.n # action dimension print(f"n_states: {n_states}, n_actions: {n_actions}") cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters models = {'Qnet':MLP(n_states,n_actions,hidden_dim=cfg['hidden_dim'])} memories = {'Memory':ReplayBufferQue(cfg['memory_capacity'])} agent = DoubleDQN(models,memories,cfg) return env,agent def train(self,cfg,env,agent): print("Start training!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] # record rewards for all episodes steps = [] for i_ep in range(cfg["train_eps"]): ep_reward = 0 # reward per episode ep_step = 0 state = env.reset() # reset and obtain initial state for _ in range(cfg['ep_max_steps']): action = agent.sample_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push((state, action, reward, next_state, done)) state = next_state agent.update() if done: break if i_ep % cfg['target_update'] == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) steps.append(ep_step) rewards.append(ep_reward) if (i_ep+1)%10 == 0: print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}: Epislon: {agent.epsilon:.3f}') print("Finish training!") env.close() res_dic = {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps} return res_dic def test(self,cfg,env,agent): print("Start testing!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] # record rewards for all episodes steps = [] for i_ep in range(cfg['test_eps']): ep_reward = 0 # reward per episode ep_step = 0 state = env.reset() # reset and obtain initial state for _ in range(cfg['ep_max_steps']): action = agent.predict_action(state) next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward if done: break steps.append(ep_step) rewards.append(ep_reward) print(f"Episode: {i_ep+1}/{cfg['test_eps']},Reward: {ep_reward:.2f}") print("Finish testing!") env.close() return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps} if __name__ == "__main__": main = Main() main.run()