#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-04-29 12:53:54 LastEditor: JiangJi LastEditTime: 2021-04-29 13:56:39 Discription: Environment: ''' import copy import torch import torch.nn as nn import torch.optim as optim import numpy as np from common.memory import ReplayBuffer from SAC.model import ValueNet,PolicyNet,SoftQNet class SAC: def __init__(self,state_dim,action_dim,cfg) -> None: self.batch_size = cfg.batch_size self.memory = ReplayBuffer(cfg.capacity) self.device = cfg.device self.value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device) self.target_value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device) self.soft_q_net = SoftQNet(state_dim, action_dim, cfg.hidden_dim).to(self.device) self.policy_net = PolicyNet(state_dim, action_dim, cfg.hidden_dim).to(self.device) self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=cfg.value_lr) self.soft_q_optimizer = optim.Adam(self.soft_q_net.parameters(), lr=cfg.soft_q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.policy_lr) for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(param.data) self.value_criterion = nn.MSELoss() self.soft_q_criterion = nn.MSELoss() def update(self, gamma=0.99,mean_lambda=1e-3, std_lambda=1e-3, z_lambda=0.0, soft_tau=1e-2, ): if len(self.memory) < self.batch_size: return state, action, reward, next_state, done = self.memory.sample(self.batch_size) state = torch.FloatTensor(state).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device) done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device) expected_q_value = self.soft_q_net(state, action) expected_value = self.value_net(state) new_action, log_prob, z, mean, log_std = self.policy_net.evaluate(state) target_value = self.target_value_net(next_state) next_q_value = reward + (1 - done) * gamma * target_value q_value_loss = self.soft_q_criterion(expected_q_value, next_q_value.detach()) expected_new_q_value = self.soft_q_net(state, new_action) next_value = expected_new_q_value - log_prob value_loss = self.value_criterion(expected_value, next_value.detach()) log_prob_target = expected_new_q_value - expected_value policy_loss = (log_prob * (log_prob - log_prob_target).detach()).mean() mean_loss = mean_lambda * mean.pow(2).mean() std_loss = std_lambda * log_std.pow(2).mean() z_loss = z_lambda * z.pow(2).sum(1).mean() policy_loss += mean_loss + std_loss + z_loss self.soft_q_optimizer.zero_grad() q_value_loss.backward() self.soft_q_optimizer.step() self.value_optimizer.zero_grad() value_loss.backward() self.value_optimizer.step() self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_( target_param.data * (1.0 - soft_tau) + param.data * soft_tau ) def save(self, path): torch.save(self.value_net.state_dict(), path + "sac_value") torch.save(self.value_optimizer.state_dict(), path + "sac_value_optimizer") torch.save(self.soft_q_net.state_dict(), path + "sac_soft_q") torch.save(self.soft_q_optimizer.state_dict(), path + "sac_soft_q_optimizer") torch.save(self.policy_net.state_dict(), path + "sac_policy") torch.save(self.policy_optimizer.state_dict(), path + "sac_policy_optimizer") def load(self, path): self.value_net.load_state_dict(torch.load(path + "sac_value")) self.value_optimizer.load_state_dict(torch.load(path + "sac_value_optimizer")) self.target_value_net = copy.deepcopy(self.value_net) self.soft_q_net.load_state_dict(torch.load(path + "sac_soft_q")) self.soft_q_optimizer.load_state_dict(torch.load(path + "sac_soft_q_optimizer")) self.policy_net.load_state_dict(torch.load(path + "sac_policy")) self.policy_optimizer.load_state_dict(torch.load(path + "sac_policy_optimizer"))