import math import random import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.distributions import Normal import matplotlib.pyplot as plt import seaborn as sns import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加父路径到系统路径sys.path use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") from common.multiprocessing_env import SubprocVecEnv num_envs = 16 env_name = "Pendulum-v0" def make_env(): def _thunk(): env = gym.make(env_name) return env return _thunk envs = [make_env() for i in range(num_envs)] envs = SubprocVecEnv(envs) env = gym.make(env_name) def init_weights(m): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, mean=0., std=0.1) nn.init.constant_(m.bias, 0.1) class ActorCritic(nn.Module): def __init__(self, num_inputs, num_outputs, hidden_size, std=0.0): super(ActorCritic, self).__init__() self.critic = nn.Sequential( nn.Linear(num_inputs, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1) ) self.actor = nn.Sequential( nn.Linear(num_inputs, hidden_size), nn.ReLU(), nn.Linear(hidden_size, num_outputs), ) self.log_std = nn.Parameter(torch.ones(1, num_outputs) * std) self.apply(init_weights) def forward(self, x): value = self.critic(x) mu = self.actor(x) std = self.log_std.exp().expand_as(mu) dist = Normal(mu, std) return dist, value def plot(frame_idx, rewards): plt.figure(figsize=(20,5)) plt.subplot(131) plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1])) plt.plot(rewards) plt.show() def test_env(vis=False): state = env.reset() if vis: env.render() done = False total_reward = 0 while not done: state = torch.FloatTensor(state).unsqueeze(0).to(device) dist, _ = model(state) next_state, reward, done, _ = env.step(dist.sample().cpu().numpy()[0]) state = next_state if vis: env.render() total_reward += reward return total_reward def compute_gae(next_value, rewards, masks, values, gamma=0.99, tau=0.95): values = values + [next_value] gae = 0 returns = [] for step in reversed(range(len(rewards))): delta = rewards[step] + gamma * values[step + 1] * masks[step] - values[step] gae = delta + gamma * tau * masks[step] * gae returns.insert(0, gae + values[step]) return returns num_inputs = envs.observation_space.shape[0] num_outputs = envs.action_space.shape[0] #Hyper params: hidden_size = 256 lr = 3e-2 num_steps = 20 model = ActorCritic(num_inputs, num_outputs, hidden_size).to(device) optimizer = optim.Adam(model.parameters()) max_frames = 100000 frame_idx = 0 test_rewards = [] state = envs.reset() while frame_idx < max_frames: log_probs = [] values = [] rewards = [] masks = [] entropy = 0 for _ in range(num_steps): state = torch.FloatTensor(state).to(device) dist, value = model(state) action = dist.sample() next_state, reward, done, _ = envs.step(action.cpu().numpy()) log_prob = dist.log_prob(action) entropy += dist.entropy().mean() log_probs.append(log_prob) values.append(value) rewards.append(torch.FloatTensor(reward).unsqueeze(1).to(device)) masks.append(torch.FloatTensor(1 - done).unsqueeze(1).to(device)) state = next_state frame_idx += 1 if frame_idx % 1000 == 0: test_rewards.append(np.mean([test_env() for _ in range(10)])) print(test_rewards[-1]) # plot(frame_idx, test_rewards) next_state = torch.FloatTensor(next_state).to(device) _, next_value = model(next_state) returns = compute_gae(next_value, rewards, masks, values) log_probs = torch.cat(log_probs) returns = torch.cat(returns).detach() values = torch.cat(values) advantage = returns - values actor_loss = -(log_probs * advantage.detach()).mean() critic_loss = advantage.pow(2).mean() loss = actor_loss + 0.5 * critic_loss - 0.001 * entropy optimizer.zero_grad() loss.backward() optimizer.step()