#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2021-04-29 17:02:00 Discription: Environment: ''' # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import math #!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2021-04-29 16:45:33 Discription: use np array to define Q table Environment: ''' import numpy as np import math class QLearning(object): def __init__(self, state_dim,action_dim,cfg): self.action_dim = action_dim # dimension of acgtion self.lr = cfg.lr # learning rate self.gamma = cfg.gamma self.epsilon = 0 self.sample_count = 0 self.epsilon_start = cfg.epsilon_start self.epsilon_end = cfg.epsilon_end self.epsilon_decay = cfg.epsilon_decay self.Q_table = np.zeros((state_dim, action_dim)) # Q表 def choose_action(self, state): self.sample_count += 1 self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.sample_count / self.epsilon_decay) if np.random.uniform(0, 1) > self.epsilon: # 随机选取0-1之间的值,如果大于epsilon就按照贪心策略选取action,否则随机选取 action = self.predict(state) else: action = np.random.choice(self.action_dim) #有一定概率随机探索选取一个动作 return action def predict(self, state): '''根据输入观测值,采样输出的动作值,带探索,测试模型时使用 ''' Q_list = self.Q_table[state, :] Q_max = np.max(Q_list) action_list = np.where(Q_list == Q_max)[0] action = np.random.choice(action_list) # Q_max可能对应多个 action ,可以随机抽取一个 return action def update(self, state, action, reward, next_state, done): Q_predict = self.Q_table[state, action] if done: Q_target = reward # 没有下一个状态了 else: Q_target = reward + self.gamma * np.max( self.Q_table[next_state, :]) # Q_table-learning self.Q_table[state, action] += self.lr * (Q_target - Q_predict) # 修正q def save(self,path): np.save(path+"Q_table.npy", self.Q_table) def load(self, path): self.Q_table = np.load(path+"Q_table.npy")