# Policy Gradient Policy-based方法是强化学习中与Value-based(比如Q-learning)相对的方法,其目的是对策略本身进行梯度下降,相关基础知识参考[Datawhale-Policy Gradient](https://datawhalechina.github.io/leedeeprl-notes/#/chapter4/chapter4)。 其中REINFORCE是一个最基本的Policy Gradient方法,主要解决策略梯度无法直接计算的问题,具体原理参考[CSDN-REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703) ## 伪代码 结合REINFORCE原理,其伪代码如下: ![img](assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70-20210428001336032.png) ## 实现 ## 参考 [REINFORCE和Reparameterization Trick](https://blog.csdn.net/JohnJim0/article/details/110230703) [Policy Gradient paper](https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf) [REINFORCE](https://towardsdatascience.com/policy-gradient-methods-104c783251e0)