#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-04-29 12:53:54 LastEditor: JiangJi LastEditTime: 2021-12-22 15:41:19 Discription: Environment: ''' import copy import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.distributions import Normal import numpy as np import random device=torch.device("cuda" if torch.cuda.is_available() else "cpu") class ReplayBuffer: def __init__(self, capacity): self.capacity = capacity # 经验回放的容量 self.buffer = [] # 缓冲区 self.position = 0 def push(self, state, action, reward, next_state, done): ''' 缓冲区是一个队列,容量超出时去掉开始存入的转移(transition) ''' if len(self.buffer) < self.capacity: self.buffer.append(None) self.buffer[self.position] = (state, action, reward, next_state, done) self.position = (self.position + 1) % self.capacity def sample(self, batch_size): batch = random.sample(self.buffer, batch_size) # 随机采出小批量转移 state, action, reward, next_state, done = zip(*batch) # 解压成状态,动作等 return state, action, reward, next_state, done def __len__(self): ''' 返回当前存储的量 ''' return len(self.buffer) class ValueNet(nn.Module): def __init__(self, state_dim, hidden_dim, init_w=3e-3): super(ValueNet, self).__init__() self.linear1 = nn.Linear(state_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.linear3 = nn.Linear(hidden_dim, 1) self.linear3.weight.data.uniform_(-init_w, init_w) self.linear3.bias.data.uniform_(-init_w, init_w) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x class SoftQNet(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3): super(SoftQNet, self).__init__() self.linear1 = nn.Linear(state_dim + action_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.linear3 = nn.Linear(hidden_dim, 1) self.linear3.weight.data.uniform_(-init_w, init_w) self.linear3.bias.data.uniform_(-init_w, init_w) def forward(self, state, action): x = torch.cat([state, action], 1) x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x class PolicyNet(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim, init_w=3e-3, log_std_min=-20, log_std_max=2): super(PolicyNet, self).__init__() self.log_std_min = log_std_min self.log_std_max = log_std_max self.linear1 = nn.Linear(state_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, hidden_dim) self.mean_linear = nn.Linear(hidden_dim, action_dim) self.mean_linear.weight.data.uniform_(-init_w, init_w) self.mean_linear.bias.data.uniform_(-init_w, init_w) self.log_std_linear = nn.Linear(hidden_dim, action_dim) self.log_std_linear.weight.data.uniform_(-init_w, init_w) self.log_std_linear.bias.data.uniform_(-init_w, init_w) def forward(self, state): x = F.relu(self.linear1(state)) x = F.relu(self.linear2(x)) mean = self.mean_linear(x) log_std = self.log_std_linear(x) log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max) return mean, log_std def evaluate(self, state, epsilon=1e-6): mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) log_prob = normal.log_prob(z) - torch.log(1 - action.pow(2) + epsilon) log_prob = log_prob.sum(-1, keepdim=True) return action, log_prob, z, mean, log_std def get_action(self, state): state = torch.FloatTensor(state).unsqueeze(0).to(device) mean, log_std = self.forward(state) std = log_std.exp() normal = Normal(mean, std) z = normal.sample() action = torch.tanh(z) action = action.detach().cpu().numpy() return action[0] class SAC: def __init__(self,state_dim,action_dim,cfg) -> None: self.batch_size = cfg.batch_size self.memory = ReplayBuffer(cfg.capacity) self.device = cfg.device self.value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device) self.target_value_net = ValueNet(state_dim, cfg.hidden_dim).to(self.device) self.soft_q_net = SoftQNet(state_dim, action_dim, cfg.hidden_dim).to(self.device) self.policy_net = PolicyNet(state_dim, action_dim, cfg.hidden_dim).to(self.device) self.value_optimizer = optim.Adam(self.value_net.parameters(), lr=cfg.value_lr) self.soft_q_optimizer = optim.Adam(self.soft_q_net.parameters(), lr=cfg.soft_q_lr) self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.policy_lr) for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_(param.data) self.value_criterion = nn.MSELoss() self.soft_q_criterion = nn.MSELoss() def update(self, gamma=0.99,mean_lambda=1e-3, std_lambda=1e-3, z_lambda=0.0, soft_tau=1e-2, ): if len(self.memory) < self.batch_size: return state, action, reward, next_state, done = self.memory.sample(self.batch_size) state = torch.FloatTensor(state).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device) done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device) expected_q_value = self.soft_q_net(state, action) expected_value = self.value_net(state) new_action, log_prob, z, mean, log_std = self.policy_net.evaluate(state) target_value = self.target_value_net(next_state) next_q_value = reward + (1 - done) * gamma * target_value q_value_loss = self.soft_q_criterion(expected_q_value, next_q_value.detach()) expected_new_q_value = self.soft_q_net(state, new_action) next_value = expected_new_q_value - log_prob value_loss = self.value_criterion(expected_value, next_value.detach()) log_prob_target = expected_new_q_value - expected_value policy_loss = (log_prob * (log_prob - log_prob_target).detach()).mean() mean_loss = mean_lambda * mean.pow(2).mean() std_loss = std_lambda * log_std.pow(2).mean() z_loss = z_lambda * z.pow(2).sum(1).mean() policy_loss += mean_loss + std_loss + z_loss self.soft_q_optimizer.zero_grad() q_value_loss.backward() self.soft_q_optimizer.step() self.value_optimizer.zero_grad() value_loss.backward() self.value_optimizer.step() self.policy_optimizer.zero_grad() policy_loss.backward() self.policy_optimizer.step() for target_param, param in zip(self.target_value_net.parameters(), self.value_net.parameters()): target_param.data.copy_( target_param.data * (1.0 - soft_tau) + param.data * soft_tau ) def save(self, path): torch.save(self.value_net.state_dict(), path + "sac_value") torch.save(self.value_optimizer.state_dict(), path + "sac_value_optimizer") torch.save(self.soft_q_net.state_dict(), path + "sac_soft_q") torch.save(self.soft_q_optimizer.state_dict(), path + "sac_soft_q_optimizer") torch.save(self.policy_net.state_dict(), path + "sac_policy") torch.save(self.policy_optimizer.state_dict(), path + "sac_policy_optimizer") def load(self, path): self.value_net.load_state_dict(torch.load(path + "sac_value")) self.value_optimizer.load_state_dict(torch.load(path + "sac_value_optimizer")) self.target_value_net = copy.deepcopy(self.value_net) self.soft_q_net.load_state_dict(torch.load(path + "sac_soft_q")) self.soft_q_optimizer.load_state_dict(torch.load(path + "sac_soft_q_optimizer")) self.policy_net.load_state_dict(torch.load(path + "sac_policy")) self.policy_optimizer.load_state_dict(torch.load(path + "sac_policy_optimizer"))