#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-11-07 18:10:37 LastEditor: JiangJi LastEditTime: 2022-07-21 21:52:31 Discription: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add to system path import gym import torch import datetime import argparse from common.utils import save_results,make_dir from common.utils import plot_rewards,save_args from common.models import MLP from common.memories import ReplayBuffer from DoubleDQN.double_dqn import DoubleDQN def get_args(): """ 超参数 """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='DoubleDQN',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor") parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon") parser.add_argument('--lr',default=0.0001,type=float,help="learning rate") parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity") parser.add_argument('--batch_size',default=64,type=int) parser.add_argument('--target_update',default=4,type=int) parser.add_argument('--hidden_dim',default=256,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # 保存模型的路径 parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed=1): env = gym.make(cfg.env_name) env.seed(seed) n_states = env.observation_space.shape[0] n_actions = env.action_space.n model = MLP(n_states, n_actions,hidden_dim=cfg.hidden_dim) memory = ReplayBuffer(cfg.memory_capacity) agent = DoubleDQN(n_states,n_actions,model,memory,cfg) return env,agent def train(cfg,env,agent): print("开始训练!") print(f"回合:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}") rewards = [] # 记录所有回合的奖励 for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录一回合内的奖励 state = env.reset() # 重置环境,返回初始状态 while True: action = agent.sample(state) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) state = next_state agent.update() if done: break if i_ep % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) if (i_ep+1)%10 == 0: print(f'回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f},Epislon:{agent.epsilon:.3f}') rewards.append(ep_reward) print("完成训练!") return {'rewards':rewards} def test(cfg,env,agent): print("开始测试!") print(f"回合:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}") rewards = [] # 记录所有回合的奖励 for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 while True: action = agent.predict(state) next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward if done: break rewards.append(ep_reward) print(f'回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.2f}') print("完成测试!") return {'rewards':rewards} if __name__ == "__main__": cfg = get_args() # 训练 env, agent = env_agent_config(cfg,seed=1) res_dic = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) save_args(cfg) # 保存参数 agent.save(path=cfg.model_path) # 保存模型 save_results(res_dic, tag='train', path=cfg.result_path) plot_rewards(res_dic['rewards'], cfg, tag="train") # 测试 env, agent = env_agent_config(cfg,seed=1) agent.load(path=cfg.model_path) # 导入模型 res_dic = test(cfg, env, agent) save_results(res_dic, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], cfg, tag="test") # 画出结果