import sys,os os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized." curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add path to system path import datetime import argparse import gym import torch import numpy as np from common.utils import all_seed from common.launcher import Launcher from common.memories import PGReplay from common.models import ActorCriticSoftmax from envs.register import register_env from a2c_2 import A2C_2 class Main(Launcher): def get_args(self): curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='A2C',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=2000,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps") parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") parser.add_argument('--lr',default=3e-4,type=float,help="learning rate") parser.add_argument('--actor_hidden_dim',default=256,type=int) parser.add_argument('--critic_hidden_dim',default=256,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--seed',default=10,type=int,help="seed") parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not") parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/", 'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/", } args = {**vars(args),**default_args} # type(dict) return args def env_agent_config(self,cfg): ''' create env and agent ''' register_env(cfg['env_name']) env = gym.make(cfg['env_name']) if cfg['seed'] !=0: # set random seed all_seed(env,seed=cfg["seed"]) try: # state dimension n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n')) except AttributeError: n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape')) n_actions = env.action_space.n # action dimension print(f"n_states: {n_states}, n_actions: {n_actions}") cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters models = {'ActorCritic':ActorCriticSoftmax(cfg['n_states'],cfg['n_actions'], actor_hidden_dim = cfg['actor_hidden_dim'],critic_hidden_dim=cfg['critic_hidden_dim'])} memories = {'ACMemory':PGReplay()} agent = A2C_2(models,memories,cfg) return env,agent def train(self,cfg,env,agent): print("Start training!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] # record rewards for all episodes steps = [] # record steps for all episodes for i_ep in range(cfg['train_eps']): ep_reward = 0 # reward per episode ep_step = 0 # step per episode ep_entropy = 0 state = env.reset() # reset and obtain initial state for _ in range(cfg['ep_max_steps']): action, value, dist = agent.sample_action(state) # sample action next_state, reward, done, _ = env.step(action) # update env and return transitions log_prob = torch.log(dist.squeeze(0)[action]) entropy = -np.sum(np.mean(dist.detach().numpy()) * np.log(dist.detach().numpy())) agent.memory.push((value,log_prob,reward)) # save transitions state = next_state # update state ep_reward += reward ep_entropy += entropy ep_step += 1 if done: break agent.update(next_state,ep_entropy) # update agent rewards.append(ep_reward) steps.append(ep_step) if (i_ep+1)%10==0: print(f'Episode: {i_ep+1}/{cfg["train_eps"]}, Reward: {ep_reward:.2f}, Steps:{ep_step}') print("Finish training!") return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps} def test(self,cfg,env,agent): print("Start testing!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] # record rewards for all episodes steps = [] # record steps for all episodes for i_ep in range(cfg['test_eps']): ep_reward = 0 # reward per episode ep_step = 0 state = env.reset() # reset and obtain initial state for _ in range(cfg['ep_max_steps']): action,_,_ = agent.predict_action(state) # predict action next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward ep_step += 1 if done: break rewards.append(ep_reward) steps.append(ep_step) print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Steps:{ep_step}, Reward: {ep_reward:.2f}") print("Finish testing!") return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps} if __name__ == "__main__": main = Main() main.run()