#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-09 20:25:52 @LastEditor: John LastEditTime: 2020-09-02 01:19:13 @Discription: @Environment: python 3.7.7 ''' import numpy as np import torch import torch.nn as nn import torch.optim as optim from model import Actor, Critic from memory import ReplayBuffer class DDPG: def __init__(self, n_states, n_actions, hidden_dim=30, device="cpu", critic_lr=1e-3, actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128): self.device = device self.critic = Critic(n_states, n_actions, hidden_dim).to(device) self.actor = Actor(n_states, n_actions, hidden_dim).to(device) self.target_critic = Critic(n_states, n_actions, hidden_dim).to(device) self.target_actor = Actor(n_states, n_actions, hidden_dim).to(device) for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()): target_param.data.copy_(param.data) for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()): target_param.data.copy_(param.data) self.critic_optimizer = optim.Adam( self.critic.parameters(), lr=critic_lr) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr) self.memory = ReplayBuffer(memory_capacity) self.batch_size = batch_size self.soft_tau = soft_tau self.gamma = gamma def select_action(self, state): state = torch.FloatTensor(state).unsqueeze(0).to(self.device) action = self.actor(state) # torch.detach()用于切断反向传播 return action.detach().cpu().numpy()[0, 0] def update(self): if len(self.memory) < self.batch_size: return state, action, reward, next_state, done = self.memory.sample( self.batch_size) # 将所有变量转为张量 state = torch.FloatTensor(state).to(self.device) next_state = torch.FloatTensor(next_state).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device) done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device) # 注意critic将(s_t,a)作为输入 policy_loss = self.critic(state, self.actor(state)) policy_loss = -policy_loss.mean() next_action = self.target_actor(next_state) target_value = self.target_critic(next_state, next_action.detach()) expected_value = reward + (1.0 - done) * self.gamma * target_value expected_value = torch.clamp(expected_value, -np.inf, np.inf) value = self.critic(state, action) value_loss = nn.MSELoss()(value, expected_value.detach()) self.actor_optimizer.zero_grad() policy_loss.backward() self.actor_optimizer.step() self.critic_optimizer.zero_grad() value_loss.backward() self.critic_optimizer.step() for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()): target_param.data.copy_( target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau ) for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()): target_param.data.copy_( target_param.data * (1.0 - self.soft_tau) + param.data * self.soft_tau ) def save_model(self,path): torch.save(self.target_actor.state_dict(), path) def load_model(self,path): self.actor.load_state_dict(torch.load(path))