#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-11 16:30:09 @LastEditor: John @LastEditTime: 2020-06-12 11:34:52 @Discription: @Environment: python 3.7.7 ''' import matplotlib.pyplot as plt import pandas as pd import seaborn as sns; sns.set() import numpy as np import os # def plot(item,ylabel='rewards'): # plt.figure() # plt.plot(np.arange(len(item)), item) # plt.title(ylabel+' of DDPG') # plt.ylabel(ylabel) # plt.xlabel('episodes') # plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png") # plt.show() def plot(item,ylabel='rewards'): df = pd.DataFrame(dict(time=np.arange(500), value=np.random.randn(500).cumsum())) g = sns.relplot(x="time", y="value", kind="line", data=df) g.fig.autofmt_xdate() # time = range(len(item)) # sns.set(style="darkgrid", font_scale=1.5) # sns.lineplot(time=time, data=item, color="r", condition="behavior_cloning") # # sns.tsplot(time=time, data=x2, color="b", condition="dagger") # plt.ylabel("Reward") # plt.xlabel("Iteration Number") # plt.title("Imitation Learning") plt.show() if __name__ == "__main__": output_path = os.path.dirname(__file__)+"/result/" rewards=np.load(output_path+"rewards.npy", ) moving_average_rewards=np.load(output_path+"moving_average_rewards.npy",) plot(rewards) plot(moving_average_rewards,ylabel='moving_average_rewards')