import sys import os import torch.nn as nn import torch.nn.functional as F curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime import numpy as np from common.utils import save_results_1, make_dir from common.utils import plot_rewards from dqn import DQN curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class MLP(nn.Module): def __init__(self, n_states,n_actions,hidden_dim=128): """ 初始化q网络,为全连接网络 n_states: 输入的特征数即环境的状态维度 n_actions: 输出的动作维度 """ super(MLP, self).__init__() self.fc1 = nn.Linear(n_states, hidden_dim) # 输入层 self.fc2 = nn.Linear(hidden_dim,hidden_dim) # 隐藏层 self.fc3 = nn.Linear(hidden_dim, n_actions) # 输出层 def forward(self, x): # 各层对应的激活函数 x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return self.fc3(x) class Config: '''超参数 ''' def __init__(self): ############################### hyperparameters ################################ self.algo_name = 'DQN' # algorithm name self.env_name = 'CartPole-v0' # environment name self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # check GPU self.seed = 10 # 随机种子,置0则不设置随机种子 self.train_eps = 200 # 训练的回合数 self.test_eps = 20 # 测试的回合数 ################################################################################ ################################## 算法超参数 ################################### self.gamma = 0.95 # 强化学习中的折扣因子 self.epsilon_start = 0.90 # e-greedy策略中初始epsilon self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率 self.lr = 0.0001 # 学习率 self.memory_capacity = 100000 # 经验回放的容量 self.batch_size = 64 # mini-batch SGD中的批量大小 self.target_update = 4 # 目标网络的更新频率 self.hidden_dim = 256 # 网络隐藏层 ################################################################################ ################################# 保存结果相关参数 ################################ self.result_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/results/' # 保存结果的路径 self.model_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/models/' # 保存模型的路径 self.save = True # 是否保存图片 ################################################################################ def env_agent_config(cfg): ''' 创建环境和智能体 ''' env = gym.make(cfg.env_name) # 创建环境 n_states = env.observation_space.shape[0] # 状态维度 n_actions = env.action_space.n # 动作维度 print(f"n states: {n_states}, n actions: {n_actions}") model = MLP(n_states,n_actions) agent = DQN(n_actions, model, cfg) # 创建智能体 if cfg.seed !=0: # 设置随机种子 torch.manual_seed(cfg.seed) env.seed(cfg.seed) np.random.seed(cfg.seed) return env, agent def train(cfg, env, agent): ''' 训练 ''' print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 steps = [] for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录一回合内的奖励 ep_step = 0 state = env.reset() # 重置环境,返回初始状态 while True: ep_step += 1 action = agent.choose_action(state) # 选择动作 next_state, reward, done, _ = env.step(action) # 更新环境,返回transition agent.memory.push(state, action, reward, next_state, done) # 保存transition state = next_state # 更新下一个状态 agent.update() # 更新智能体 ep_reward += reward # 累加奖励 if done: break if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新 agent.target_net.load_state_dict(agent.policy_net.state_dict()) steps.append(ep_step) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward) else: ma_rewards.append(ep_reward) if (i_ep + 1) % 1 == 0: print(f'Episode:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}') print('Finish training!') env.close() res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps} return res_dic def test(cfg, env, agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') ############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ############### cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon ################################################################################ rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 steps = [] for i_ep in range(cfg.test_eps): ep_reward = 0 # 记录一回合内的奖励 ep_step = 0 state = env.reset() # 重置环境,返回初始状态 while True: ep_step+=1 action = agent.choose_action(state) # 选择动作 next_state, reward, done, _ = env.step(action) # 更新环境,返回transition state = next_state # 更新下一个状态 ep_reward += reward # 累加奖励 if done: break steps.append(ep_step) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1) else: ma_rewards.append(ep_reward) print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}') print('完成测试!') env.close() return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps} if __name__ == "__main__": cfg = Config() # 训练 env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=cfg.model_path) # 保存模型 save_results_1(res_dic, tag='train', path=cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果 # 测试 env, agent = env_agent_config(cfg) agent.load(path=cfg.model_path) # 导入模型 res_dic = test(cfg, env, agent) save_results_1(res_dic, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果