#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-04-29 12:59:22 LastEditor: JiangJi LastEditTime: 2021-12-22 16:27:13 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime from SoftActorCritic.env_wrapper import NormalizedActions from SoftActorCritic.sac import SAC from common.utils import save_results, make_dir from common.utils import plot_rewards curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 algo_name = 'SAC' # 算法名称 env_name = 'Pendulum-v1' # 环境名称 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU class SACConfig: def __init__(self) -> None: self.algo_name = algo_name self.env_name = env_name # 环境名称 self.device= device self.train_eps = 300 self.test_eps = 20 self.max_steps = 500 # 每回合的最大步数 self.gamma = 0.99 self.mean_lambda=1e-3 self.std_lambda=1e-3 self.z_lambda=0.0 self.soft_tau=1e-2 self.value_lr = 3e-4 self.soft_q_lr = 3e-4 self.policy_lr = 3e-4 self.capacity = 1000000 self.hidden_dim = 256 self.batch_size = 128 class PlotConfig: def __init__(self) -> None: self.algo_name = algo_name # 算法名称 self.env_name = env_name # 环境名称 self.device= device self.result_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/results/' # 保存结果的路径 self.model_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/models/' # 保存模型的路径 self.save = True # 是否保存图片 def env_agent_config(cfg,seed=1): env = NormalizedActions(gym.make(cfg.env_name)) env.seed(seed) action_dim = env.action_space.shape[0] state_dim = env.observation_space.shape[0] agent = SAC(state_dim,action_dim,cfg) return env,agent def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录一回合内的奖励 state = env.reset() # 重置环境,返回初始状态 for i_step in range(cfg.max_steps): action = agent.policy_net.get_action(state) next_state, reward, done, _ = env.step(action) agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) if (i_ep+1)%10 == 0: print(f'回合:{i_ep+1}/{cfg.train_eps}, 奖励:{ep_reward:.3f}') print('完成训练!') return rewards, ma_rewards def test(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 for i_step in range(cfg.max_steps): action = agent.policy_net.get_action(state) next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print(f"回合:{i_ep+1}/{cfg.test_eps},奖励:{ep_reward:.1f}") print('完成测试!') return rewards, ma_rewards if __name__ == "__main__": cfg=SACConfig() plot_cfg = PlotConfig() # 训练 env, agent = env_agent_config(cfg, seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=plot_cfg.model_path) # 保存模型 save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果 # 测试 env, agent = env_agent_config(cfg, seed=10) agent.load(path=plot_cfg.model_path) # 导入模型 rewards, ma_rewards = test(cfg, env, agent) save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果