#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-12 16:58:16 LastEditor: John LastEditTime: 2021-03-13 11:02:50 Discription: Environment: ''' import numpy as np from collections import defaultdict import torch class Sarsa(object): def __init__(self, action_dim,sarsa_cfg,): self.action_dim = action_dim # number of actions self.lr = sarsa_cfg.lr # learning rate self.gamma = sarsa_cfg.gamma self.epsilon = sarsa_cfg.epsilon self.Q = defaultdict(lambda: np.zeros(action_dim)) # self.Q = np.zeros((state_dim, action_dim)) # Q表 def choose_action(self, state): best_action = np.argmax(self.Q[state]) # action = best_action action_probs = np.ones(self.action_dim, dtype=float) * self.epsilon / self.action_dim action_probs[best_action] += (1.0 - self.epsilon) action = np.random.choice(np.arange(len(action_probs)), p=action_probs) return action def update(self, state, action, reward, next_state, next_action,done): Q_predict = self.Q[state][action] if done: Q_target = reward # terminal state else: Q_target = reward + self.gamma * self.Q[next_state][next_action] self.Q[state][action] += self.lr * (Q_target - Q_predict) def save(self,path): '''把 Q表格 的数据保存到文件中 ''' import dill torch.save( obj=self.Q, f=path+"sarsa_model.pkl", pickle_module=dill ) def load(self, path): '''从文件中读取数据到 Q表格 ''' import dill self.Q =torch.load(f=path+'sarsa_model.pkl',pickle_module=dill)