[Eng](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README_en.md)|[中文](https://github.com/JohnJim0816/reinforcement-learning-tutorials/blob/master/README.md) ## 写在前面 本项目用于学习RL基础算法,尽量做到: **注释详细**,**结构清晰**。 代码结构主要分为以下几个脚本: * ```model.py``` 强化学习算法的基本模型,比如神经网络,actor,critic等 * ```memory.py``` 保存Replay Buffer,用于off-policy * ```plot.py``` 利用matplotlib或seaborn绘制rewards图,包括滑动平均的reward,结果保存在result文件夹中 * ```env.py``` 用于构建强化学习环境,也可以重新自定义环境,比如给action加noise * ```agent.py``` RL核心算法,比如dqn等,主要包含update和choose_action两个方法, * ```main.py``` 运行主函数 其中```model.py```,```memory.py```,```plot.py``` 由于不同算法都会用到,所以放入```common```文件夹中。 ## 运行环境 python 3.7、pytorch 1.6.0-1.7.1、gym 0.17.0-0.18.0 ## 使用说明 运行带有```train```的py文件或ipynb文件进行训练,如果前面带有```task```如```task0_train.py```,表示对task0任务训练 类似的带有```eval```即为测试。 ## 算法进度 | 算法名称 | 相关论文材料 | 环境 | 备注 | | :--------------------------------------: | :----------------------------------------------------------: | ----------------------------------------- | :--------------------------------: | | [On-Policy First-Visit MC](./MonteCarlo) | [medium blog](https://medium.com/analytics-vidhya/monte-carlo-methods-in-reinforcement-learning-part-1-on-policy-methods-1f004d59686a) | [Racetrack](./envs/racetrack_env.md) | | | [Q-Learning](./QLearning) | [towardsdatascience blog](https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56),[q learning paper](https://ieeexplore.ieee.org/document/8836506) | [CliffWalking-v0](./envs/gym_info.md) | | | [Sarsa](./Sarsa) | [geeksforgeeks blog](https://www.geeksforgeeks.org/sarsa-reinforcement-learning/) | [Racetrack](./envs/racetrack_env.md) | | | [DQN](./DQN) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf),[Nature DQN Paper](https://www.nature.com/articles/nature14236) | [CartPole-v0](./envs/gym_info.md) | | | [DQN-cnn](./DQN_cnn) | [DQN Paper](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf) | [CartPole-v0](./envs/gym_info.md) | 与DQN相比使用了CNN而不是全链接网络 | | [DoubleDQN](./DoubleDQN) | [DoubleDQN Paper](https://arxiv.org/abs/1509.06461) | [CartPole-v0](./envs/gym_info.md) | | | [Hierarchical DQN](HierarchicalDQN) | [H-DQN Paper](https://arxiv.org/abs/1604.06057) | [CartPole-v0](./envs/gym_info.md) | | | [PolicyGradient](./PolicyGradient) | [Lil'log](https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html) | [CartPole-v0](./envs/gym_info.md) | | | [A2C](./A2C) | [A3C Paper](https://arxiv.org/abs/1602.01783) | [CartPole-v0](./envs/gym_info.md) | | | [SAC](./SAC) | [SAC Paper](https://arxiv.org/abs/1801.01290) | [Pendulum-v0](./envs/gym_info.md) | | | [PPO](./PPO) | [PPO paper](https://arxiv.org/abs/1707.06347) | [CartPole-v0](./envs/gym_info.md) | | | [DDPG](./DDPG) | [DDPG Paper](https://arxiv.org/abs/1509.02971) | [Pendulum-v0](./envs/gym_info.md) | | | [TD3](./TD3) | [TD3 Paper](https://arxiv.org/abs/1802.09477) | [HalfCheetah-v2]((./envs/mujoco_info.md)) | | ## Refs [RL-Adventure-2](https://github.com/higgsfield/RL-Adventure-2) [RL-Adventure](https://github.com/higgsfield/RL-Adventure)