#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-22 16:18:10 LastEditor: John LastEditTime: 2021-04-11 01:25:43 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import gym import numpy as np import torch import datetime from PPO.agent import PPO from common.plot import plot_rewards from common.utils import save_results SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/") if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹 os.mkdir(SAVED_MODEL_PATH) RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/") if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹 os.mkdir(RESULT_PATH) class PPOConfig: def __init__(self) -> None: self.env = 'LunarLander-v2' self.algo = 'PPO' self.batch_size = 128 self.gamma=0.95 self.n_epochs = 4 self.actor_lr = 0.002 self.critic_lr = 0.005 self.gae_lambda=0.95 self.policy_clip=0.2 self.hidden_dim = 256 self.update_fre = 20 # frequency of agent update self.train_eps = 300 # max training episodes self.train_steps = 1000 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu def train(cfg,env,agent): best_reward = env.reward_range[0] rewards= [] ma_rewards = [] # moving average rewards avg_reward = 0 running_steps = 0 for i_episode in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 # for i_step in range(cfg.train_steps): while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) running_steps += 1 ep_reward += reward agent.memory.push(state, action, prob, val, reward, done) if running_steps % cfg.update_fre == 0: agent.update() state = state_ # if done: # break rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) avg_reward = np.mean(rewards[-100:]) if avg_reward > best_reward: best_reward = avg_reward agent.save(path=SAVED_MODEL_PATH) print('Episode:{}/{}, Reward:{:.1f}, avg reward:{:.1f}, Loss:{}'.format(i_episode+1,cfg.train_eps,ep_reward,avg_reward,agent.loss)) return rewards,ma_rewards if __name__ == '__main__': cfg = PPOConfig() env = gym.make(cfg.env) env.seed(1) state_dim=env.observation_space.shape[0] action_dim=env.action_space.n agent = PPO(state_dim,action_dim,cfg) rewards,ma_rewards = train(cfg,env,agent) save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)