#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John LastEditTime: 2021-05-04 15:05:37 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(__file__) parent_path = os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import gym import torch import datetime from DoubleDQN.agent import DoubleDQN from common.plot import plot_rewards from common.utils import save_results, make_dir curr_time = datetime.datetime.now().strftime( "%Y%m%d-%H%M%S") # obtain current time class DoubleDQNConfig: def __init__(self): self.algo = "DoubleDQN" # name of algo self.env = 'CartPole-v0' # env name self.result_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/models/' # path to save results self.gamma = 0.99 self.epsilon_start = 0.9 # start epsilon of e-greedy policy self.epsilon_end = 0.01 self.epsilon_decay = 200 self.lr = 0.01 # learning rate self.memory_capacity = 10000 # capacity of Replay Memory self.batch_size = 128 self.train_eps = 300 # max tranng episodes self.train_steps = 200 # max training steps per episode self.target_update = 2 # update frequency of target net self.eval_eps = 50 # max evaling episodes self.eval_steps = 200 # max evaling steps per episode self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu self.hidden_dim = 128 # hidden size of net def env_agent_config(cfg,seed=1): env = gym.make(cfg.env) env.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = DoubleDQN(state_dim,action_dim,cfg) return env,agent def train(cfg,env,agent): print('Start to train !') rewards,ma_rewards = [],[] for i_ep in range(cfg.train_eps): state = env.reset() # reset环境状态 ep_reward = 0 while True: action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) # 更新环境参数 ep_reward += reward agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory state = next_state # 跳转到下一个状态 agent.update() # 每步更新网络 if done: break if i_ep % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward}') rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards,ma_rewards def eval(cfg,env,agent): rewards = [] ma_rewards = [] for i_ep in range(cfg.eval_eps): state = env.reset() ep_reward = 0 while True: action = agent.predict(state) next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}") return rewards,ma_rewards if __name__ == "__main__": cfg = DoubleDQNConfig() env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)