#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John LastEditTime: 2021-05-04 15:01:34 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(__file__) parent_path = os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import datetime import torch import gym from common.utils import save_results, make_dir from common.plot import plot_rewards from DQN.agent import DQN curr_time = datetime.datetime.now().strftime( "%Y%m%d-%H%M%S") # obtain current time class DQNConfig: def __init__(self): self.algo = "DQN" # name of algo self.env = 'CartPole-v0' self.result_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/models/' # path to save results self.train_eps = 300 # 训练的episode数目 self.eval_eps = 50 # number of episodes for evaluating self.gamma = 0.95 self.epsilon_start = 0.90 # e-greedy策略的初始epsilon self.epsilon_end = 0.01 self.epsilon_decay = 500 self.lr = 0.0001 # learning rate self.memory_capacity = 100000 # Replay Memory容量 self.batch_size = 64 self.target_update = 2 # target net的更新频率 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 检测gpu self.hidden_dim = 256 # 神经网络隐藏层维度 def env_agent_config(cfg,seed=1): env = gym.make(cfg.env) env.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = DQN(state_dim,action_dim,cfg) return env,agent def train(cfg, env, agent): print('Start to train !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] ma_rewards = [] # moveing average reward for i_episode in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while True: action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) state = next_state agent.update() if done: break if i_episode % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) # save ma rewards if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards, ma_rewards def eval(cfg,env,agent): rewards = [] # 记录所有episode的reward ma_rewards = [] # 滑动平均的reward for i_ep in range(cfg.eval_eps): ep_reward = 0 # 记录每个episode的reward state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode) while True: action = agent.predict(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一个交互 state = next_state # 存储上一个观察值 ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}") return rewards,ma_rewards if __name__ == "__main__": cfg = DQNConfig() env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)