#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-11 20:58:21 @LastEditor: John LastEditTime: 2021-05-04 14:49:45 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(__file__) parent_path = os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import datetime import gym import torch from DDPG.env import NormalizedActions, OUNoise from DDPG.agent import DDPG from common.utils import save_results,make_dir from common.plot import plot_rewards curr_time = datetime.datetime.now().strftime( "%Y%m%d-%H%M%S") # obtain current time class DDPGConfig: def __init__(self): self.algo = 'DDPG' self.env = 'Pendulum-v0' # env name self.result_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/models/' # path to save results self.gamma = 0.99 self.critic_lr = 1e-3 self.actor_lr = 1e-4 self.memory_capacity = 10000 self.batch_size = 128 self.train_eps = 300 self.eval_eps = 50 self.eval_steps = 200 self.target_update = 4 self.hidden_dim = 30 self.soft_tau = 1e-2 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") def env_agent_config(cfg,seed=1): env = NormalizedActions(gym.make(cfg.env)) env.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] agent = DDPG(state_dim,action_dim,cfg) return env,agent def train(cfg, env, agent): print('Start to train ! ') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') ou_noise = OUNoise(env.action_space) # action noise rewards = [] ma_rewards = [] # moving average rewards for i_episode in range(cfg.train_eps): state = env.reset() ou_noise.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) action = ou_noise.get_action( action, i_step) # 即paper中的random process next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards, ma_rewards def eval(cfg, env, agent): print('Start to Eval ! ') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] ma_rewards = [] # moving average rewards for i_episode in range(cfg.eval_eps): state = env.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward state = next_state print('Episode:{}/{}, Reward:{}'.format(i_episode+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete Eval!') return rewards, ma_rewards if __name__ == "__main__": cfg = DDPGConfig() # train env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) # eval env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)