import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import torch import gym import numpy as np import datetime from TD3.agent import TD3 from common.plot import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time class TD3Config: def __init__(self) -> None: self.algo = 'TD3' self.env = 'HalfCheetah-v2' self.seed = 0 self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models self.start_timestep = 25e3 # Time steps initial random policy is used self.eval_freq = 5e3 # How often (time steps) we evaluate # self.train_eps = 800 self.max_timestep = 4000000 # Max time steps to run environment self.expl_noise = 0.1 # Std of Gaussian exploration noise self.batch_size = 256 # Batch size for both actor and critic self.gamma = 0.99 # gamma factor self.lr = 0.0005 # Target network update rate self.policy_noise = 0.2 # Noise added to target policy during critic update self.noise_clip = 0.5 # Range to clip target policy noise self.policy_freq = 2 # Frequency of delayed policy updates self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Runs policy for X episodes and returns average reward # A fixed seed is used for the eval environment def eval(env,agent, seed, eval_episodes=10): eval_env = gym.make(env) eval_env.seed(seed + 100) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: # eval_env.render() action = agent.choose_action(np.array(state)) state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes print("---------------------------------------") print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}") print("---------------------------------------") return avg_reward def train(cfg,env,agent): # Evaluate untrained policy evaluations = [eval(cfg.env,agent, cfg.seed)] state, done = env.reset(), False ep_reward = 0 ep_timesteps = 0 episode_num = 0 rewards = [] ma_rewards = [] # moveing average reward for t in range(int(cfg.max_timestep)): ep_timesteps += 1 # Select action randomly or according to policy if t < cfg.start_timestep: action = env.action_space.sample() else: action = ( agent.choose_action(np.array(state)) + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions) ).clip(-max_action, max_action) # Perform action next_state, reward, done, _ = env.step(action) done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0 # Store data in replay buffer agent.memory.push(state, action, next_state, reward, done_bool) state = next_state ep_reward += reward # Train agent after collecting sufficient data if t >= cfg.start_timestep: agent.update() if done: # +1 to account for 0 indexing. +0 on ep_timesteps since it will increment +1 even if done=True print(f"Episode:{episode_num+1}, Episode T:{ep_timesteps}, Reward:{ep_reward:.3f}") # Reset environment state, done = env.reset(), False rewards.append(ep_reward) # 计算滑动窗口的reward if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) ep_reward = 0 ep_timesteps = 0 episode_num += 1 # Evaluate episode if (t + 1) % cfg.eval_freq == 0: evaluations.append(eval(cfg.env,agent, cfg.seed)) return rewards, ma_rewards # def train(cfg,env,agent): # evaluations = [eval(cfg.env,agent,cfg.seed)] # ep_reward = 0 # tot_timestep = 0 # rewards = [] # ma_rewards = [] # moveing average reward # for i_ep in range(int(cfg.train_eps)): # state, done = env.reset(), False # ep_reward = 0 # ep_timestep = 0 # while not done: # ep_timestep += 1 # tot_timestep +=1 # # Select action randomly or according to policy # if tot_timestep < cfg.start_timestep: # action = env.action_space.sample() # else: # action = ( # agent.choose_action(np.array(state)) # + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions) # ).clip(-max_action, max_action) # # action = ( # # agent.choose_action(np.array(state)) # # + np.random.normal(0, max_action * cfg.expl_noise, size=n_actions) # # ).clip(-max_action, max_action) # # Perform action # next_state, reward, done, _ = env.step(action) # done_bool = float(done) if ep_timestep < env._max_episode_steps else 0 # # Store data in replay buffer # agent.memory.push(state, action, next_state, reward, done_bool) # state = next_state # ep_reward += reward # # Train agent after collecting sufficient data # if tot_timestep >= cfg.start_timestep: # agent.update() # print(f"Episode:{i_ep}/{cfg.train_eps}, Episode Timestep:{ep_timestep}, Reward:{ep_reward:.3f}") # rewards.append(ep_reward) # # 计算滑动窗口的reward # if ma_rewards: # ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) # else: # ma_rewards.append(ep_reward) # # Evaluate episode # if (i_ep+1) % cfg.eval_freq == 0: # evaluations.append(eval(cfg.env,agent, cfg.seed)) # return rewards,ma_rewards if __name__ == "__main__": cfg = TD3Config() env = gym.make(cfg.env) env.seed(cfg.seed) # Set seeds torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] max_action = float(env.action_space.high[0]) agent = TD3(n_states,n_actions,max_action,cfg) rewards,ma_rewards = train(cfg,env,agent) make_dir(cfg.result_path,cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path) # cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/' # agent.load(cfg.result_path) # eval(cfg.env,agent, cfg.seed)