#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-11 20:58:21 @LastEditor: John @LastEditTime: 2020-07-20 23:01:02 @Discription: @Environment: python 3.7.7 ''' import torch import gym from ddpg import DDPG from env import NormalizedActions from noise import OUNoise from plot import plot import argparse def get_args(): '''模型建立好之后只需要在这里调参 ''' parser = argparse.ArgumentParser() parser.add_argument("--gamma", default=0.99, type=float) # q-learning中的gamma parser.add_argument("--critic_lr", default=1e-3, type=float) # critic学习率 parser.add_argument("--actor_lr", default=1e-4, type=float) parser.add_argument("--memory_capacity", default=10000, type=int,help="capacity of Replay Memory") parser.add_argument("--batch_size", default=128, type=int,help="batch size of memory sampling") parser.add_argument("--max_episodes", default=200, type=int) parser.add_argument("--max_steps", default=200, type=int) parser.add_argument("--target_update", default=4, type=int,help="when(every default 10 eisodes) to update target net ") config = parser.parse_args() return config if __name__ == "__main__": cfg = get_args() env = NormalizedActions(gym.make("Pendulum-v0")) # 增加action噪声 ou_noise = OUNoise(env.action_space) n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") agent=DDPG(n_states,n_actions,device="cpu", critic_lr=1e-3, actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128) rewards = [] moving_average_rewards = [] for i_episode in range(1,cfg.max_episodes+1): state=env.reset() ou_noise.reset() ep_reward = 0 for i_step in range(1,cfg.max_steps+1): action = agent.select_action(state) action = ou_noise.get_action(action, i_step) # 即paper中的random process next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state if done: break print('Episode:', i_episode, ' Reward: %i' % int(ep_reward),) rewards.append(ep_reward) # if i_episode == 1: moving_average_rewards.append(ep_reward) else: moving_average_rewards.append( 0.9*moving_average_rewards[-1]+0.1*ep_reward) print('Complete!') import os import numpy as np output_path = os.path.dirname(__file__)+"/result/" if not os.path.exists(output_path): os.mkdir(output_path) np.save(output_path+"rewards.npy", rewards) np.save(output_path+"moving_average_rewards.npy", moving_average_rewards) plot(rewards) plot(moving_average_rewards,ylabel="moving_average_rewards")