import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add to system path import torch.nn as nn import torch.nn.functional as F import gym import torch import datetime import numpy as np import argparse from common.utils import save_results_1, make_dir from common.utils import plot_rewards,save_args from dqn import DQN def get_args(): """ Hyperparameters """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='DQN',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.95,type=float,help="discounted factor") parser.add_argument('--epsilon_start',default=0.95,type=float,help="initial value of epsilon") parser.add_argument('--epsilon_end',default=0.01,type=float,help="final value of epsilon") parser.add_argument('--epsilon_decay',default=500,type=int,help="decay rate of epsilon") parser.add_argument('--lr',default=0.0001,type=float,help="learning rate") parser.add_argument('--memory_capacity',default=100000,type=int,help="memory capacity") parser.add_argument('--batch_size',default=64,type=int) parser.add_argument('--target_update',default=4,type=int) parser.add_argument('--hidden_dim',default=256,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # path to save models parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed=1): ''' 创建环境和智能体 ''' env = gym.make(cfg.env_name) # 创建环境 n_states = env.observation_space.shape[0] # 状态维度 n_actions = env.action_space.n # 动作维度 print(f"n states: {n_states}, n actions: {n_actions}") agent = DQN(n_states,n_actions, cfg) # 创建智能体 if seed !=0: # 设置随机种子 torch.manual_seed(seed) env.seed(seed) np.random.seed(seed) return env, agent def train(cfg, env, agent): ''' Training ''' print('Start training!') print(f'Env:{cfg.env_name}, A{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 steps = [] for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录一回合内的奖励 ep_step = 0 state = env.reset() # 重置环境,返回初始状态 while True: ep_step += 1 action = agent.choose_action(state) # 选择动作 next_state, reward, done, _ = env.step(action) # 更新环境,返回transition agent.memory.push(state, action, reward, next_state, done) # 保存transition state = next_state # 更新下一个状态 agent.update() # 更新智能体 ep_reward += reward # 累加奖励 if done: break if (i_ep + 1) % cfg.target_update == 0: # 智能体目标网络更新 agent.target_net.load_state_dict(agent.policy_net.state_dict()) steps.append(ep_step) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward) else: ma_rewards.append(ep_reward) if (i_ep + 1) % 1 == 0: print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f} Epislon:{agent.epsilon(agent.frame_idx):.3f}') print('Finish training!') env.close() res_dic = {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps} return res_dic def test(cfg, env, agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') ############# 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 ############### cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon ################################################################################ rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 steps = [] for i_ep in range(cfg.test_eps): ep_reward = 0 # 记录一回合内的奖励 ep_step = 0 state = env.reset() # 重置环境,返回初始状态 while True: ep_step+=1 action = agent.choose_action(state) # 选择动作 next_state, reward, done, _ = env.step(action) # 更新环境,返回transition state = next_state # 更新下一个状态 ep_reward += reward # 累加奖励 if done: break steps.append(ep_step) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1] * 0.9 + ep_reward * 0.1) else: ma_rewards.append(ep_reward) print(f'Episode:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.2f}, Step:{ep_step:.2f}') print('完成测试!') env.close() return {'rewards':rewards,'ma_rewards':ma_rewards,'steps':steps} if __name__ == "__main__": cfg = get_args() # 训练 env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹 save_args(cfg) agent.save(path=cfg.model_path) # 保存模型 save_results_1(res_dic, tag='train', path=cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 画出结果 # 测试 env, agent = env_agent_config(cfg) agent.load(path=cfg.model_path) # 导入模型 res_dic = test(cfg, env, agent) save_results_1(res_dic, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果