#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2021-03-26 17:16:07 Discription: Environment: ''' import sys,os sys.path.append(os.getcwd()) # 添加当前终端路径 import gym import datetime from envs.gridworld_env import CliffWalkingWapper, FrozenLakeWapper from QLearning.agent import QLearning from common.plot import plot_rewards from common.utils import save_results SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/") if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹 os.mkdir(SAVED_MODEL_PATH) RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/") if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹 os.mkdir(RESULT_PATH) class QlearningConfig: '''训练相关参数''' def __init__(self): self.train_eps = 200 # 训练的episode数目 self.gamma = 0.9 # reward的衰减率 self.epsilon_start = 0.99 # e-greedy策略中初始epsilon self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon self.epsilon_decay = 200 # e-greedy策略中epsilon的衰减率 self.lr = 0.1 # learning rate def train(cfg,env,agent): rewards = [] ma_rewards = [] # moving average reward steps = [] # 记录所有episode的steps for i_episode in range(cfg.train_eps): ep_reward = 0 # 记录每个episode的reward ep_steps = 0 # 记录每个episode走了多少step state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode) while True: action = agent.choose_action(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互 agent.update(state, action, reward, next_state, done) # Q-learning算法更新 state = next_state # 存储上一个观察值 ep_reward += reward ep_steps += 1 # 计算step数 if done: break steps.append(ep_steps) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.train_eps,ep_reward)) return rewards,ma_rewards def eval(cfg,env,agent): # env = gym.make("FrozenLake-v0", is_slippery=False) # 0 left, 1 down, 2 right, 3 up # env = FrozenLakeWapper(env) rewards = [] # 记录所有episode的reward ma_rewards = [] # 滑动平均的reward steps = [] # 记录所有episode的steps for i_episode in range(cfg.train_eps): ep_reward = 0 # 记录每个episode的reward ep_steps = 0 # 记录每个episode走了多少step state = env.reset() # 重置环境, 重新开一局(即开始新的一个episode) while True: action = agent.choose_action(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一个交互 state = next_state # 存储上一个观察值 ep_reward += reward ep_steps += 1 # 计算step数 if done: break steps.append(ep_steps) rewards.append(ep_reward) # 计算滑动平均的reward if ma_rewards: ma_rewards.append(rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print("Episode:{}/{}: reward:{:.1f}".format(i_episode+1, cfg.train_eps,ep_reward)) return rewards,ma_rewards if __name__ == "__main__": cfg = QlearningConfig() env = gym.make("CliffWalking-v0") # 0 up, 1 right, 2 down, 3 left env = CliffWalkingWapper(env) action_dim = env.action_space.n agent = QLearning(action_dim,cfg) rewards,ma_rewards = train(cfg,env,agent) agent.save(path=SAVED_MODEL_PATH) save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)