#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-24 22:18:18 LastEditor: John LastEditTime: 2021-03-27 04:24:30 Discription: Environment: ''' import torch import torch.nn as nn import numpy as np import random,math from HierarchicalDQN.model import MLP from common.memory import ReplayBuffer import torch.optim as optim class HierarchicalDQN: def __init__(self,state_dim,action_dim,cfg): self.action_dim = action_dim self.device = cfg.device self.batch_size = cfg.batch_size self.sample_count = 0 self.epsilon = 0 self.epsilon_start = cfg.epsilon_start self.epsilon_end = cfg.epsilon_end self.epsilon_decay = cfg.epsilon_decay self.batch_size = cfg.batch_size self.policy_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device) self.target_net = MLP(2*state_dim, action_dim,cfg.hidden_dim).to(self.device) self.meta_policy_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device) self.meta_target_net = MLP(state_dim, state_dim,cfg.hidden_dim).to(self.device) self.optimizer = optim.Adam(self.policy_net.parameters(),lr=cfg.lr) self.meta_optimizer = optim.Adam(self.meta_policy_net.parameters(),lr=cfg.lr) self.memory = ReplayBuffer(cfg.memory_capacity) self.meta_memory = ReplayBuffer(cfg.memory_capacity) def to_onehot(x): oh = np.zeros(6) oh[x - 1] = 1. return oh def set_goal(self,meta_state): self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay) self.sample_count += 1 if random.random() > self.epsilon: with torch.no_grad(): meta_state = torch.tensor([meta_state], device=self.device, dtype=torch.float32) q_value = self.policy_net(meta_state) goal = q_value.max(1)[1].item() else: goal = random.randrange(self.action_dim) goal = self.meta_policy_net(meta_state) onehot_goal = self.to_onehot(goal) return onehot_goal def choose_action(self,state): self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay) self.sample_count += 1 if random.random() > self.epsilon: with torch.no_grad(): state = torch.tensor([state], device=self.device, dtype=torch.float32) q_value = self.policy_net(state) action = q_value.max(1)[1].item() else: action = random.randrange(self.action_dim) return action def update(self): if self.batch_size > len(self.memory): state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size) state_batch = torch.tensor( state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float) next_state_batch = torch.tensor(next_state_batch, device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) next_state_values = self.target_net(next_state_batch).max(1)[0].detach() expected_q_values = reward_batch + self.gamma * next_state_values * (1-done_batch[0]) loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): param.grad.data.clamp_(-1, 1) self.optimizer.step() if self.batch_size > len(self.meta_memory): meta_state_batch, meta_action_batch, meta_reward_batch, next_meta_state_batch, meta_done_batch = self.memory.sample(self.batch_size) meta_state_batch = torch.tensor(meta_state_batch, device=self.device, dtype=torch.float) meta_action_batch = torch.tensor(meta_action_batch, device=self.device).unsqueeze(1) meta_reward_batch = torch.tensor(meta_reward_batch, device=self.device, dtype=torch.float) next_meta_state_batch = torch.tensor(next_meta_state_batch, device=self.device, dtype=torch.float) meta_done_batch = torch.tensor(np.float32(meta_done_batch), device=self.device).unsqueeze(1) meta_q_values = self.meta_policy_net(meta_state_batch).gather(dim=1, index=meta_action_batch) next_state_values = self.target_net(next_meta_state_batch).max(1)[0].detach() expected_meta_q_values = meta_reward_batch + self.gamma * next_state_values * (1-meta_done_batch[0]) meta_loss = nn.MSEmeta_loss()(meta_q_values, expected_meta_q_values.unsqueeze(1)) self.meta_optimizer.zero_grad() meta_loss.backward() for param in self.meta_policy_net.parameters(): param.grad.data.clamp_(-1, 1) self.meta_optimizer.step()